7.設(shè)正實數(shù)a,b,c分別滿足2a2+a=1,blog2b=1,clog5c=1,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

分析 令f(x)=2x2+x-1,則f(x)=$2(x+\frac{1}{4})^{2}$-$\frac{9}{8}$在x>0時單調(diào)遞增,即可得出a∈(0,1),在同一坐標系中作出$y=\frac{1}{x},y=lo{g_2}x,y=lo{g_5}x$的圖象,由圖象得1<b<c,即可得出大小關(guān)系.

解答 解:令f(x)=2x2+x-1,則f(x)=$2(x+\frac{1}{4})^{2}$-$\frac{9}{8}$在x>0時單調(diào)遞增,
且f(0)•f(1)=-1×2=-2<0,即a∈(0,1),
在同一坐標系中作出$y=\frac{1}{x},y=lo{g_2}x,y=lo{g_5}x$的圖象,由圖象,得1<b<c,即c>b>a;
故選:C.

點評 本題考查了函數(shù)的單調(diào)性、數(shù)形結(jié)合思想方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC中,$tanA=-\frac{5}{12}$,則cosA=( 。
A.$\frac{12}{13}$B.$-\frac{12}{13}$C.$-\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知冪函數(shù)f(x)=(n2+2n-2)${x}^{{n}^{2}-3n}$(n∈Z)的圖象關(guān)于y軸對稱,且在(0,+∞)上時減函數(shù),則n的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$,則目標函數(shù)z=7x-2y的最大值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i是虛數(shù)單位,則z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i(i為虛數(shù)單位)所對應(yīng)的點位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-1|+|x+1|.
(1)在給出的直角坐標系中作出函數(shù)y=f(x)的圖象,并從圖中找出滿足不等式f(x)≤3的解集;
(2)若函數(shù)y=f(x)的最小值記為m,設(shè)a,b∈R,且有a2+b2=m,試證明:$\frac{1}{{{a^2}+1}}+\frac{4}{{{b^2}+1}}≥\frac{18}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z滿足z•(2-i)=3-4i(其中i為虛數(shù)單位),則復(fù)數(shù)|$\frac{z}{i}$|=( 。
A.$\frac{2\sqrt{5}}{3}$B.2C.$\frac{5\sqrt{5}}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)F是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦點,M在雙曲線的右支上,且MF的中點恰為該雙曲線的虛軸的一個端點,則C的漸近線方程為( 。
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{{\sqrt{5}}}{5}x$D.$y=±\sqrt{5}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x的不等式(ax-1)(x+2a-1)>0的解集中恰含有3個整數(shù),則實數(shù)a的取值集合是$\left\{{-\frac{1}{2},-1}\right\}$.

查看答案和解析>>

同步練習(xí)冊答案