【題目】定義在R上的函數(shù)fx)=|x2ax|aR),設(shè)gx)=fx+l)﹣fx.

1)若ygx)為奇函數(shù),求a的值:

2)設(shè)hx,x∈(0,+∞

①若a≤0,證明:hx)>2

②若hx)的最小值為﹣1,求a的取值范圍.

【答案】(1)a1(2)①證明見解析②(1+∞

【解析】

1)根據(jù)函數(shù)是定義在上的奇函數(shù),令,即可求出的值;

2)①先去絕對值,再把分離常數(shù)即可證明

②根據(jù)的最小值為,分兩種情況討論即可得出的取值范圍.

1)∵gx)=|x+12ax+1||x2ax|,

一方面,由g0)=0,得|1a|0,a1,

另一方面,當(dāng)a1時,gx)=|x+12ax+1||x2x||x2+x||x2x|,

所以,g(﹣x)=|x2x||x2+x|=﹣gx),即gx)是奇函數(shù).

綜上可知a1.

2)(i)∵a≤0x0,x+10

所以hx

2,

1a0x0,

hx)>2.

ii)由(i)知,a0,

情形1a∈(01],此時

當(dāng)x∈(a,+∞)時,有2,

當(dāng)x∈(0,a]時,有hx

由上可知此時hx)>0不合題意.

情形2a∈(1,+∞)時,

當(dāng)x∈(0,a1)時,有hx,

當(dāng)x[a1a)時,有hx

當(dāng)x[a,+∞)時,有hx,

從而可知此時hx)的最小值是﹣1

綜上所述,所求a的取值范圍為(1+∞.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對一塊長米,寬米的矩形場地ABCD進行改造,點E為線段BC的中點,點F在線段CDAD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).

1)求函數(shù)的解析式;

2)設(shè)該場地中部分的改造費用為(單位:萬元),其余部分的改造費用為(單位:萬元),記總的改造費用為W單位:萬元),求W最小值,并求取最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017高考特別強調(diào)了要增加對數(shù)學(xué)文化的考查,為此某校高三年級特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個高三年級的學(xué)生進行了測試.現(xiàn)從這些學(xué)生中隨機抽取了50名學(xué)生的成績,按照成績?yōu)?/span>, ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)若高三年級共有2000名學(xué)生,試估計高三學(xué)生中這次測試成績不低于70分的人數(shù);

(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動點在直線上,動點Q在直線上,記線段的中點為

,且,則的取值范圍為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求出線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;

2)設(shè)點為曲線上的任意一點,求點到直線的距離最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題說法中正確的是

A. 對于實數(shù),“”是的充分不必要條件

B. 已知都是整數(shù),則命題“若,則不都是奇數(shù)”是假命題

C. “若,則關(guān)于的方程有實根”的逆否命題為假命題

D. 命題“全等三角形的面積相等”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照國家質(zhì)量標(biāo)準(zhǔn):某種工業(yè)產(chǎn)品的質(zhì)量指標(biāo)值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設(shè)備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標(biāo)值進行檢測.表1是甲套設(shè)備的樣本頻數(shù)分布表,圖1是乙套設(shè)備的樣本頻率分布直方圖.

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

表1:甲套設(shè)備的樣本頻數(shù)分布表

(1)將頻率視為概率,若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?

(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值與甲乙兩套設(shè)備的選擇有關(guān):

甲套設(shè)備

乙套設(shè)備

合計

合格品

不合格品

合計

(3)根據(jù)表和圖,對甲、乙兩套設(shè)備的優(yōu)劣進行比較.參考公式及數(shù)據(jù):x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

同步練習(xí)冊答案