分析 (1)應(yīng)用級別不等式的性質(zhì)求出其最小值即可;(2)求出y=15-2x,由(1)得:xy≥25,消去y解關(guān)于x的不等式即可.
解答 解:(1)m>0,n>0,依題意,xy=(m+n)($\frac{1}{m}$+$\frac{16}{n}$)=17+$\frac{16m}{n}$$\frac{n}{m}$≥17+2$\sqrt{\frac{16m}{n}•\frac{n}{m}}$=25,
當(dāng)且僅當(dāng)n=4m時(shí)“=”成立;
(2)∵2x+y=15,∴y=15-2x,
由(1)得:xy≥25,
∴x(15-2x)≥25,
∴2x2-15x+25≤0,
∴$\frac{5}{2}$≤x≤5.
點(diǎn)評 本題考查了級別不等式的性質(zhì),(2)中求出y=15-2x,代入xy≥25是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | $({1,\frac{1}{e}})$ | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2f(1)<f(4) | B. | 2f($\frac{3}{2}$)>f(3) | C. | f(0)<4f($\frac{5}{2}$) | D. | f(1)<f(3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com