(本小題滿分14分)已知,若函數(shù)在區(qū)間
的最大值為,最小值為,令.
(1)求的函數(shù)表達(dá)式;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并求出的最小值.

解:(1)的圖像為開口向上的拋物線,且對稱
軸為     ………2分
有最小值.      ………3分
當(dāng),即時,有最大值;………5分
當(dāng),即時,有最大值;………7分
 
  ………8分
(3)設(shè),則,
上是減函數(shù).………10分
設(shè),
上是增函數(shù).………12分
.∴當(dāng)時,有最小值!14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理數(shù))(12分)某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克
(Ⅰ) 求的值;
(Ⅱ) 若該商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題11分)如圖,矩形ABCD中,AB=6,BC=2,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達(dá)A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當(dāng)兩點相遇時停止運動,在點E、F的運動過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運動的時間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)在整個運動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象與x軸有兩個不同的公共點,且,當(dāng)時,恒有.
(1)當(dāng)時,求不等式的解集;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點為頂點的三角形的面積為8,且,求a的值;
(3)若,且對所有恒成立,求正實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某地方政府為地方電子工業(yè)發(fā)展,決定對某一進(jìn)口電子產(chǎn)品征收附加稅。已知這種電子產(chǎn)品國內(nèi)市場零售價為每件250元,每年可銷售40萬件,若政府征收附加稅率為t元時,則每年減少y萬件。
(1)收入表示為征收附加稅率的函數(shù);
(2)在該項經(jīng)營中每年征收附加稅金不低于600萬元,那么附加稅率應(yīng)控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標(biāo)為( )

A.(1,0)B.(2,8)
C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)曲線在點處的切線與直線垂直,則(   )

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)
(1)設(shè),若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
(2)如果當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),在區(qū)間上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上單調(diào),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案