已知二次函數(shù)的圖象與x軸有兩個不同的公共點,且,當時,恒有.
(1)當時,求不等式的解集;
(2)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,且,求a的值;
(3)若,且對所有恒成立,求正實數(shù)m的最小值.

(1)當,c=2時,,f(x)的圖像與x軸有兩個不同交點,
因為,設(shè)另一個根為x1,則2x1=6,x1=3.              …………2分
的解集為.                              …………4分
(2) 函數(shù)f(x)的圖像與x軸有兩個交點,因
設(shè)另一個根為,則于是.                       …………6分
又當時,恒有,則,則三交點為,8分
這三交點為頂點的三角形的面積為,且,
解得.                                         ………10分
(3)當時,恒有,則
所以f(x)在上是單調(diào)遞減的,且在處取到最大值1,    ………12分
要使,對所有恒成立,
必須成立, 
,
解得, 而,
所以m的最小值為2.                                        ………16分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題


(本小題滿分14分)一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(Ⅰ)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知某商品的價格上漲x%,銷售的數(shù)量就減少mx%,其中m為正的常數(shù)。
(1)當m=時,該商品的價格上漲多少,就能使銷售的總金額最大?
(2)如果適當?shù)貪q價,能使銷售總金額增加,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)設(shè)是定義在R上的偶函數(shù),其圖象關(guān)于對稱,對任意的,都有,且
(1)求;
(2)證明:是周期函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知,若函數(shù)在區(qū)間
的最大值為,最小值為,令.
(1)求的函數(shù)表達式;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知二次函數(shù)滿足:對任意實數(shù)x,都有,且當時,有成立.  
(1)求;  
(2)若的表達式;
(3)設(shè),若圖上的點都位于直線的上方,求實
數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)(    )

A. B. C. D.

查看答案和解析>>

同步練習冊答案