求下列函數(shù)的導數(shù):
y=2xtanx.
考點:導數(shù)的運算
專題:導數(shù)的綜合應用
分析:直接利用導數(shù)的運算法則計算.
解答: 解:∵y=2xtanx,
∴y′=(2xtanx)′=(2x)′tanx+2x•(tanx)′=2tanx+2xsec2x.
點評:本題考查了基本初等函數(shù)的導數(shù)公式,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y∈R+,且滿足x+2y=2xy,那么x+4y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角三角形ABC中,角A,B,C對應的邊長分別為a,b,c,若a,b,c成等比數(shù)列,則cosB的取值范圍是( 。
A、(0,
1
2
]
B、(0,
5
-1
2
]
C、[
1
2
,1)
D、[
1
2
,
5
-1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(-
1
2
+
3
2
i)3
1+i
1-i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,集合M=N(整數(shù)集),集合N=(i,i2,i3,i4),則集合M∩N的元素共有( 。
A、3個B、2個C、1個D、無窮個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到B點時,點B所表示的有理數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,4),向量
b
=(1.3)則3
a
-2
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐ABC-A1B1C1中,△ABC為等邊三角形,AB=2,AA1=
10
,A1B⊥AC,且A1B=2
3
,D是AC的中點.
(1)求證:A1C=A1A;
(2)求二面角A1-AC-B的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點,PA=AD=a.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥平面PCD.

查看答案和解析>>

同步練習冊答案