7.(x-1)($\frac{1}{x}$+x)6的展開式中的一次項(xiàng)系數(shù)是( 。
A.5B.14C.20D.35

分析 ($\frac{1}{x}$+x)6的展開式的通項(xiàng)公式為Tr+1=${∁}_{6}^{r}$$(\frac{1}{x})^{6-r}{x}^{r}$=${∁}_{6}^{r}$x2r-6,令2r-6=0,解得r=3;令2r-6=1,無解,舍去.即可得出.

解答 解:($\frac{1}{x}$+x)6的展開式的通項(xiàng)公式為Tr+1=${∁}_{6}^{r}$$(\frac{1}{x})^{6-r}{x}^{r}$=${∁}_{6}^{r}$x2r-6,令2r-6=0,解得r=3;令2r-6=1,無解,舍去.
∴($\frac{1}{x}$+x)6的展開式中的常數(shù)項(xiàng)為${∁}_{6}^{3}$,無一次項(xiàng),
所以(x-1)($\frac{1}{x}$+x)6的展開式中的一次項(xiàng)系數(shù)為20,
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=sinx-cosx,則f'(π)的值是( 。
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著人們經(jīng)濟(jì)收入的不斷增長,個(gè)人購買家庭轎車已不再是一種時(shí)尚,車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)査,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如下的數(shù)據(jù)資料:
使用年限x23456
總費(fèi)用y2.23.85.56.57.0
若由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:
1線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
2估計(jì)使用年限為10年時(shí),車的使用總費(fèi)用是多少?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y-4≤0}\end{array}\right.$,若對(duì)于任意b∈[0,1],不等式ax-by>b恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x∈N|4x-x2≥0},B={x∈N|log2(x+1)≥2},則A∩B等于( 。
A.{2,3}B.{3,4}C.{4,5}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)凸多面體,其三視圖如圖,則該幾何體的體積為(  )
A.5$\sqrt{2}$B.6$\sqrt{2}$C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)=$\frac{1}{4}$,且g[f(x)]≥k對(duì)x∈[-1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,在長方體ABCD-A1B1C1D1中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)一點(diǎn),若∠MGF=∠MGH,MG和平面EFGH所成角的正切值為$\frac{1}{2}$,則點(diǎn)M到平面EFGH的距離為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,AB=1,BC=PA=2,則該幾何體外接球的表面積為(  )
A.B.C.12πD.36π

查看答案和解析>>

同步練習(xí)冊答案