16.如圖所示,在長方體ABCD-A1B1C1D1中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)一點(diǎn),若∠MGF=∠MGH,MG和平面EFGH所成角的正切值為$\frac{1}{2}$,則點(diǎn)M到平面EFGH的距離為$\frac{\sqrt{2}}{2}$.

分析 取FG的中點(diǎn)N,作MO⊥EH于O,連接MN,ON,MH,OG,通過MG和平面EFGH所成角的正切值為$\frac{1}{2}$,推出$\frac{MO}{OG}$=$\frac{1}{2}$,然后求解即可.

解答 解:取FG的中點(diǎn)N,作MO⊥EH于O,連接MN,ON,MH,OG,
在長方體ABCD-A1B1C1D1中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)一點(diǎn),若∠MGF=∠MGH,可得△MNG≌△MGH,則△ONG≌△OGH,
所以O(shè)N=GH=AB=1,
因?yàn)镹是FG的中點(diǎn),所以NG=$\frac{1}{2}$FG=$\frac{1}{2}$AD=$\frac{1}{2}$×2=1,
所以在Rt△ONG中,OG=$\sqrt{O{N}^{2}+N{G}^{2}}$=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$
MG和平面EFGH所成角的正切值為$\frac{1}{2}$,可得
$\frac{MO}{OG}$=$\frac{1}{2}$,則MO=$\frac{1}{2}OG$=$\frac{\sqrt{2}}{\;}2$.
則點(diǎn)M到平面EFGH的距離為:$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查直線與平面的所成角的求法,點(diǎn)到平面的距離的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是( 。
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(x-1)($\frac{1}{x}$+x)6的展開式中的一次項(xiàng)系數(shù)是(  )
A.5B.14C.20D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.m,n是不同的直線,α,β是不重合的平面,下列說法正確的是( 。
A.若α∥β,m?α,n?β,則m∥n
B.若m,n?α,m∥β,n∥β,則α∥β
C.m,n是異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β
D.若α∥β,m∥α,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,A為右支上一點(diǎn),AF1與雙曲線左支相交于點(diǎn)B,且$\overrightarrow{{F_1}A}=3\overrightarrow{{F_1}B},|{\overrightarrow{O{F_1}}}|=|{\overrightarrow{OA}}|$(O為坐標(biāo)原點(diǎn)),則雙曲線C的漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\int_{-1}^1{({sinx+\sqrt{1-{x^2}}})}dx$=(  )
A.$\frac{π}{2}$B.πC.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,給出的是計(jì)算連乘數(shù)值的程序框圖,其中判斷框內(nèi)不能填入(  )
A.i≤2019?B.i<2019?C.i≤2017?D.i≤2018?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,已知$\frac{a}{tanA}=\frac{tanB}$,則△ABC的形狀是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且sn+2+an=sn+1+2an+1+2,若[x]表示不超過x的最大整數(shù),則$[{\frac{2018}{a_1}+\frac{2018}{a_2}+\frac{2018}{a_3}+…+\frac{2018}{{{a_{2018}}}}}]$=2017.

查看答案和解析>>

同步練習(xí)冊答案