分析 (1)由題設(shè)知a2=b2+16,$\frac{9}{4{a}^{2}}$+$\frac{75}{4^{2}}$=1,由此能求出橢圓C的標(biāo)準(zhǔn)方程.
(2)由A(-6,0),F(xiàn)(4,0),($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$),則得$\overrightarrow{AP}$=($\frac{15}{2}$,$\frac{5\sqrt{3}}{2}$),$\overrightarrow{FP}$=(-$\frac{5}{2}$,$\frac{5\sqrt{3}}{2}$),所以$\overrightarrow{AP}$$•\overrightarrow{FP}$=0,以AF為直徑的圓M必過點(diǎn)P,因此,過P點(diǎn)能引出該圓M的切線,設(shè)切線為PQ,交x軸于Q點(diǎn),又AF的中點(diǎn)為M(-1,0),則顯然PQ⊥PM,由此能求出所求的圖形面積.
解答 解:(1)由題意a2=b2+16,
$\frac{9}{4{a}^{2}}$+$\frac{75}{4^{2}}$=1,
解得b2=20或b2=-15(舍),
由此得a2=36,
所以,所求橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}$=1.(6分)
(2)由(1)知A(-6,0),F(xiàn)(4,0),
又($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$),則得$\overrightarrow{AP}$=($\frac{15}{2}$,$\frac{5\sqrt{3}}{2}$),$\overrightarrow{FP}$=(-$\frac{5}{2}$,$\frac{5\sqrt{3}}{2}$).
所以$\overrightarrow{AP}$$•\overrightarrow{FP}$=0,即∠APF=90°,△APF是Rt△,
所以,以AF為直徑的圓M必過點(diǎn)P,因此,過P點(diǎn)能引出該圓M的切線,
設(shè)切線為PQ,交x軸于Q點(diǎn),又AF的中點(diǎn)為M(-1,0),則顯然PQ⊥PM,
而kPM=$\sqrt{3}$,所以PQ的斜率為-$\frac{\sqrt{3}}{3}$,
因此,過P點(diǎn)引圓M的切線方程為:y-$\frac{5\sqrt{3}}{2}$=-$\frac{\sqrt{3}}{3}$(x-$\frac{3}{2}$),即x+$\sqrt{3}$y-9=0.
令y=0,則x=9,∴Q(9,0),又M(-1,0),
所以S扇形MPF=$\frac{1}{2}×5×5×\frac{π}{3}$=$\frac{25π}{6}$,
因此,所求的圖形面積是S=S△PQM-S扇形MPF=$\frac{75\sqrt{3}-25π}{6}$.
點(diǎn)評(píng) 本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {1,3,4} | C. | {1,2,3,8,4,7} | D. | {0,1,2,3,4,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (-1,3) | C. | (3,5) | D. | (-1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{1}{25}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既非充分也非必要 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com