【題目】美國(guó)想通過(guò)對(duì)中國(guó)芯片的技術(shù)封鏡達(dá)到扼殺中國(guó)科技的企圖,但卻激發(fā)了中國(guó)“芯”的研究熱潮.某公司研發(fā)的兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金2千萬(wàn)元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn)經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入4千萬(wàn)元,公司獲得毛收入1千萬(wàn)元;生產(chǎn)芯片的毛收入(千萬(wàn)元)與投入的資金(千萬(wàn)元)的函數(shù)關(guān)系為,其圖象如圖所示:

1)試分別求出生產(chǎn)兩種芯片的毛收入(千萬(wàn)元)與投入資金(千萬(wàn)元)的函數(shù)關(guān)系式;

2)現(xiàn)在公司準(zhǔn)備投入4億元資金同時(shí)生產(chǎn)兩種芯片,設(shè)投入千萬(wàn)元生產(chǎn)芯片,用表示公司所獲利潤(rùn),當(dāng)為多少時(shí),可以獲得最大利潤(rùn)?并求最大利潤(rùn).

(利潤(rùn)芯片毛收入芯片毛收入-研發(fā)耗費(fèi)資金)

【答案】1芯片的毛收入,芯片的毛收入,(2千萬(wàn)元時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)9千萬(wàn)元.

【解析】

1)利用待定系數(shù)法求出函數(shù)解析式;

2)將實(shí)際問(wèn)題轉(zhuǎn)換成二次函數(shù)求最值的問(wèn)題,即可求解.

解:(1)設(shè)投入資金千萬(wàn)元,則生產(chǎn)芯片的毛收入

代入,得,∴所以,生產(chǎn)芯片的毛收入.

2)公司投入4億元資金同時(shí)生產(chǎn)兩種芯片設(shè)投入千萬(wàn)元生產(chǎn)芯片,則投入千萬(wàn)元資金生產(chǎn)芯片公司所獲利潤(rùn)故當(dāng),即千萬(wàn)元時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)9千萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中, .

(Ⅰ)求的值;

(Ⅱ)若的角平分線(xiàn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),并且內(nèi)切于定圓..

(1)求動(dòng)圓圓心的軌跡方程;

(2)若上存在兩個(gè)點(diǎn),(1)中曲線(xiàn)上有兩個(gè)點(diǎn),并且三點(diǎn)共線(xiàn),三點(diǎn)共線(xiàn),,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201911日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專(zhuān)項(xiàng)附加扣除;(3)專(zhuān)項(xiàng)附加扣除包括:①贍養(yǎng)老人費(fèi)用,②子女教育費(fèi)用,③繼續(xù)教育費(fèi)用,④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元,②子女教育費(fèi)用:每個(gè)子女每月扣除1000元,新的個(gè)稅政策的稅率表部分內(nèi)容如下:

級(jí)數(shù)

一級(jí)

二級(jí)

三級(jí)

每月應(yīng)納稅所得額元(含稅)

稅率

3

10

20

現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無(wú)其它專(zhuān)項(xiàng)附加扣除,則他該月應(yīng)交納的個(gè)稅金額為(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

2)求的單調(diào)區(qū)間;

3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠(chǎng)生產(chǎn)一種服裝,每件服裝成本為40元,出廠(chǎng)單價(jià)定為60元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠(chǎng)單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)不會(huì)超過(guò)600.

1設(shè)一次訂購(gòu)件,服裝的實(shí)際出廠(chǎng)單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;

2當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠(chǎng)獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是平行四邊形的四棱錐中,點(diǎn)是線(xiàn)段上的點(diǎn),平面平面,,,.

1)求證:點(diǎn)中點(diǎn);

2)求證:平面平面;

3)求三棱錐底面上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是 ( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案