【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1 .
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點(diǎn),∠ADB是二面角A﹣CC1﹣B的平面角,求直線AC1與平面ABC所成角的余弦值.
【答案】解:(Ⅰ)證明:連接BC1 , 因?yàn)锽B1C1C為菱形, 所以B1C⊥BC1 , 又B1C⊥AC1 , AC1∩BC1=C1 ,
所以B1C⊥面ABC1 . 故B1C⊥AB.
因?yàn)锳B⊥BB1 , 且BB1∩BC1 , 所以AB⊥面BB1C1C.
而AB平面ABB1A1 , 所以平面AA1B1B⊥平面BB1C1C;
(Ⅱ)因?yàn)椤螦DB是二面角A﹣CC1﹣B的平面角,
所以BD⊥CC1 , 又D是CC1中點(diǎn),
所以BD=BC1 , 所以△C1BC為等邊三角形.
如圖所示,分別以BA,BB1 , BD為x,y,z軸建立空間直角坐標(biāo)系,
不妨設(shè)AB=2,則A(2,0,0), , , ).
設(shè) 是平面ABC的一個(gè)法向量,則 ,即 ,
取z=1得 .
所以 = ,
所以直線AC1與平面ABC所成的余弦值為
【解析】(Ⅰ)連接BC1 , 可得B1C⊥面ABC1 . B1C⊥AB. 由AB⊥BB1 , 得AB⊥面BB1C1C.可得平面AA1B1B⊥平面BB1C1C;(Ⅱ)由∠ADB是二面角A﹣CC1﹣B的平面角,得△C1BC為等邊三角形.分別以BA,BB1 , BD為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)AB=2,則A(2,0,0), , .利用向量法求解.
【考點(diǎn)精析】掌握平面與平面垂直的判定和空間角的異面直線所成的角是解答本題的根本,需要知道一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D為三角形ABC邊BC上一點(diǎn), =3 ,En(n∈N*)為AC邊上的一列點(diǎn),滿足 = an+1 ﹣(3an+2) ,其中實(shí)數(shù)列{an}中,an>0,a1=1,則{an}的通項(xiàng)公式為( )
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=4﹣f(x),函數(shù) ,若曲線y=f(x)與y=g(x)圖象的交點(diǎn)分別為(x1 , y1),(x2 , y2),(x3 , y3),…,(xm , ym),則 (結(jié)果用含有m的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒(méi)有擊中目標(biāo),2,3,4,5,6,7,8,
9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點(diǎn),P是三角形BDC'內(nèi)的動(dòng)點(diǎn),EP⊥BC',則P的軌跡長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線 是平面內(nèi)到定點(diǎn) 的距離與到定直線 的距離之和為 的動(dòng)點(diǎn) 的軌跡.則曲線 與 軸交點(diǎn)的坐標(biāo)是________________;又已知點(diǎn) ( 為常數(shù)),那么 的最小值 ________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是某市2017年4月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某同志隨機(jī)選擇4月1日至4月12日中的某一天到達(dá)該市,并停留3天. 該同志到達(dá)當(dāng)日空氣質(zhì)量重度污染的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若a1=1,且Sn=tan﹣ ,其中n∈N*.
(1)求實(shí)數(shù)t的值和數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log3a2n , 求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com