【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=4﹣f(x),函數(shù) ,若曲線y=f(x)與y=g(x)圖象的交點(diǎn)分別為(x1 , y1),(x2 , y2),(x3 , y3),…,(xm , ym),則 (結(jié)果用含有m的式子表示).
【答案】2m
【解析】解:因?yàn)閒(﹣x)=4﹣f(x), 所以y=f(x)關(guān)于點(diǎn)(0,2)對(duì)稱,
因?yàn)? ,
所以g(﹣x)= + = + ,
所以g(x)+g(x)=4,
所以y=g(x)關(guān)于點(diǎn)(0,2)對(duì)稱,
所以曲線y=f(x)與y=g(x)圖象的交點(diǎn)關(guān)于點(diǎn)(0,2)對(duì)稱,
所以xi+yi=2,
所以 2m,
所以答案是:2m.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值的相關(guān)知識(shí),掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且,當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C: =1(a>b>0)的離心率為 ,過(guò)右焦點(diǎn)F2(c,0)垂直于x軸的直線與橢圓交于A,B兩點(diǎn)且|AB|= ,又過(guò)左焦點(diǎn)F1(﹣c,0)任作直線l交橢圓于點(diǎn)M
(1)求橢圓C的方程
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對(duì)稱,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是拋物線C:y2=2px(p>0)上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,則拋物線C的方程為( )
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定實(shí)數(shù) t,已知命題 p:函數(shù) 有零點(diǎn);命題 q: x∈[1,+∞) ≤4-1.
(Ⅰ)當(dāng) t=1 時(shí),判斷命題 q 的真假;
(Ⅱ)若 p∨q 為假命題,求 t 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過(guò)點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1 .
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點(diǎn),∠ADB是二面角A﹣CC1﹣B的平面角,求直線AC1與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次高三年級(jí)優(yōu)秀學(xué)生座談會(huì),擬請(qǐng)20名來(lái)自本校高三(1)(2)(3)(4)班的學(xué)生參加,各班邀請(qǐng)的學(xué)生數(shù)如下表所示;
班級(jí) | 高三(1) | 高三(2) | 高三(3) | 高三(4) |
人數(shù) | 4 | 6 | 4 | 6 |
(1)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一班級(jí)的概率;
(2)從這20名學(xué)生中隨機(jī)選出3 名學(xué)生發(fā)言,設(shè)來(lái)自高三(3)的學(xué)生數(shù)為,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com