分析 (Ⅰ)由切化弦公式$tanA=\frac{sinA}{cosA},tanB=\frac{sinB}{cosB}$,帶入$2(tanA+tanB)=\frac{tanA}{cosB}+\frac{tanB}{cosA}$并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,這樣根據(jù)兩角和的正弦公式即可得到sinA+sinB=2sinC,從而根據(jù)正弦定理便可得出a+b=2c;
(Ⅱ)根據(jù)a+b=2c,兩邊平方便可得出a2+b2+2ab=4c2,從而得出a2+b2=4c2-2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了$\frac{{c}^{2}}{ab}≥1$,這樣由余弦定理便可得出$cosC=\frac{3{c}^{2}}{2ab}-1$,從而得出cosC的范圍,進而便可得出cosC的最小值.
解答 解:(Ⅰ)證明:由$2(tanA+tanB)=\frac{tanA}{cosB}+\frac{tanB}{cosA}$得:
$2(\frac{sinA}{cosA}+\frac{sinB}{cosB})=\frac{sinA}{cosAcosB}+\frac{sinB}{cosAcosB}$;
∴兩邊同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;
∴2sin(A+B)=sinA+sinB;
即sinA+sinB=2sinC(1);
根據(jù)正弦定理,$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$;
∴$sinA=\frac{a}{2R},sinB=\frac{2R},sinC=\frac{c}{2R}$,帶入(1)得:$\frac{a}{2R}+\frac{2R}=\frac{2c}{2R}$;
∴a+b=2c;
(Ⅱ)a+b=2c;
∴(a+b)2=a2+b2+2ab=4c2;
∴a2+b2=4c2-2ab,且4c2≥4ab,當(dāng)且僅當(dāng)a=b時取等號;
又a,b>0;
∴$\frac{{c}^{2}}{ab}≥1$;
∴由余弦定理,$cosC=\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{3{c}^{2}-2ab}{2ab}=\frac{3}{2}•\frac{{c}^{2}}{ab}-1$$≥\frac{1}{2}$;
∴cosC的最小值為$\frac{1}{2}$.
點評 考查切化弦公式,兩角和的正弦公式,三角形的內(nèi)角和為π,以及三角函數(shù)的誘導(dǎo)公式,正余弦定理,不等式a2+b2≥2ab的應(yīng)用,不等式的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π | B. | $\frac{32}{3}$π | C. | 8π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 56 | B. | 60 | C. | 120 | D. | 140 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 48 | C. | 60 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com