某汽車的緊急剎車裝置在遇到特別情況時(shí),需在2 s內(nèi)完成剎車,其位
移(單位:m)關(guān)于時(shí)間(單位:s)的函數(shù)為:s(t)=-3t3+t2+20,求:
(1)開始剎車后1 s內(nèi)的平均速度;
(2)剎車1 s到2 s之間的平均速度;
(3)剎車1 s時(shí)的瞬時(shí)速度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,(為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直,.
(Ⅰ)求的值及的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù) (為正實(shí)數(shù)),若對于任意,總存在, 使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義在(0,+∞)上的函數(shù)f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=4x3+3tx2-6t2x+t-1,x∈R,其
中t∈R.
①當(dāng)t=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
②當(dāng)t≠0時(shí),求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(ax2-2x+a)·e-x.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=--a-2,h(x)=x2-2x-ln x,若x>1時(shí)總有g(x)<h(x),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=,其中a為正實(shí)數(shù).
(1)當(dāng)a=時(shí),求f(x)的極值點(diǎn).
(2)若f(x)為[,]上的單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)若存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)若,求證:當(dāng)時(shí),恒成立;
(3)設(shè),證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com