已知函數(shù)f(x)=ax3+bx2在x=-1時取得極值,曲線y=f(x)在x=1處的切線的斜率為12;函數(shù)g(x)=f(x)+mx,x∈[1,+∞),函數(shù)g(x)的導(dǎo)函數(shù)g'(x)的最小值為0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求實數(shù)m的值;
(Ⅲ) 求證:g(x)≥-7.
解:(Ⅰ)∵f(x)=ax
3+bx
2,
∴f'(x)=3ax
2+2bx.
由題意有
,
解得
.
∴函數(shù)f(x)的解析式為f(x)=2x
3+3x
2.
(Ⅱ)g(x)=f(x)+mx=2x
3+3x
2+mx,x∈[1,+∞),
在[1,+∞)單調(diào)遞增
∴[g'(x)]
min=g'(1)=12+m=0,
∴m=-12.
(Ⅲ)g(x)=2x
3+3x
2-12x,x∈[1,+∞),
由(Ⅱ)知,當(dāng)x=1時,g'(x)=0,
當(dāng)x>1時,g'(x)>0,∴g(x)在[1,+∞)上是增函數(shù).
∴g(x)≥g(1)=2+3-12=-7.
分析:(I)求出f(x)的導(dǎo)數(shù),令導(dǎo)數(shù)在-1處的值為0,在x=1處的值為12,列出方程組,求出a,b的值.
(II)求出g(x)的導(dǎo)函數(shù),求出導(dǎo)函數(shù)的對稱軸,判斷出g'(x)的單調(diào)性,求出導(dǎo)函數(shù)的最小值,列出方程,求出m
(III)利用導(dǎo)函數(shù)的符號,判斷出g(x)的單調(diào)性,求出g(x)的最小值.
點評:導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為0;函數(shù)在切點處的值為曲線在切點處的斜率這是導(dǎo)數(shù)的幾何意義;二次函數(shù)的最值與對稱軸與區(qū)間的相對位置有關(guān).