A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{6}$ |
分析 利用等差數(shù)列的通項公式列出方程組,由此能求出此數(shù)列的公差.
解答 解:∵在等差數(shù)列{an}中,a3+a5=2,a7+a10+a13=9,
∴$\left\{\begin{array}{l}{{a}_{1}+2d+{a}_{1}+4d=2}\\{{a}_{1}+6d+{a}_{1}+9d+{a}_{1}+12d=9}\end{array}\right.$,
解得${a}_{1}=0,d=\frac{1}{3}$.
故選:A.
點評 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的通項公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3} | B. | {1,3} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不存在x∈R,x2+x+1>0 | B. | 存在x0∈R,x02+x0+1>0 | ||
C. | 存在x0∈R,x02+x0+1≤0 | D. | 對任意的x∈R,x2+x+1≤0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com