【題目】在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為、,定點(diǎn)A(-2,0),B(2,0).

(1) 若橢圓C上存在點(diǎn)T,使得,求橢圓C的離心率的取值范圍;

(2) 已知點(diǎn)在橢圓C上.

①求橢圓C的方程;

②記M為橢圓C上的動點(diǎn),直線AM,BM分別與橢圓C交于另一點(diǎn)P,Q,若, .求λμ的值.

【答案】(1);(2);6

【解析】試題分析:1先求出動點(diǎn)的軌跡方程,設(shè)出橢圓方程,與的軌跡方程聯(lián)立求出 ,根據(jù)橢圓橫坐標(biāo)的有界性求出 的范圍,離心率表示為 的函數(shù),求出函數(shù)的值域即可得結(jié)果;2①根據(jù)點(diǎn)在橢圓C,結(jié)合1的結(jié)論可得橢圓方程,②設(shè)出點(diǎn) ,根據(jù), 分別求出表示, 列方程化簡即可得結(jié)果.

試題解析:(1)設(shè)點(diǎn)T(x,y),由,得(x2)2y22[(x1)2y2],即x2y22.

y2m2m,(其中:m=

因此0≤m2mm,解得1≤m≤2,所以橢圓的離心率e.

(2) 橢圓C的方程為

設(shè)M(x0,y0),P(x1,y1),Q(x2,y2)

從而

因?yàn)?/span>y=1,所以(λy1)21,

λ22λ(λ1)x12(λ1)210.

因?yàn)?/span>y=1,代入得2λ(λ1)x13λ24λ10.

由題意知,λ≠1,故x1=-,所以x0,同理可得x0.

因此,所以λμ=6為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)= , .

(1)若函數(shù)處取得極值,求的值,并判斷處取得極大值還是極小值.

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

求證:當(dāng)時(shí),關(guān)于的不等式在區(qū)間上無解.(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,mN*)項(xiàng),并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列稱為數(shù)列{an}的一個(gè)m階子數(shù)列.已知數(shù)列{an}的通項(xiàng)公式為an (nN*,a為常數(shù)),等差數(shù)列a2,a3,a6是數(shù)列{an}的一個(gè)3階子數(shù)列

1)求a的值;

2)等差數(shù)列b1,b2,,bm{an}的一個(gè)m (m≥3,mN*) 階子數(shù)列,且b1 (k為常數(shù),kN*,k≥2),求證:mk1;

3等比數(shù)列c1,c2,,cm{an}的一個(gè)m (m≥3,mN*) 階子數(shù)列,

求證:c1c2cm≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)已知動圓過定點(diǎn)且與軸截得的弦的長為

)求動圓圓心的軌跡的方程;

)已知點(diǎn),動直線和坐標(biāo)軸不垂直,且與軌跡相交于兩點(diǎn),試問:在軸上是否存在一定點(diǎn),使直線過點(diǎn),且使得直線,,的斜率依次成等差數(shù)列?若存在,請求出定點(diǎn)的坐標(biāo);否則,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的圖象全部在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“拋階磚”是國外游樂場的典型游戲之一.參與者只將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲,但很少有人得到獎品,請用所學(xué)的概率知識解釋這是為什么.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù),求

最小值.

查看答案和解析>>

同步練習(xí)冊答案