1.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.

分析 根據(jù)兩個(gè)向量的數(shù)量積的值,整理出兩個(gè)向量之間的關(guān)系,得到兩個(gè)向量的數(shù)量積2倍等于向量的模長的平方,寫出求夾角的公式,得到結(jié)果.

解答 解:設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
∵非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,
∴(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=2$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow$|2=2|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ+|$\overrightarrow$|2=0,
∴cosθ=-$\frac{1}{2}$
∵0°≤θ≤180°
∴θ=120°,
故答案為:120°

點(diǎn)評 本題考查數(shù)量積表示兩個(gè)向量的夾角,本題解題的關(guān)鍵是整理出兩個(gè)向量的數(shù)量積與模長之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線y=4-x2與x軸圍成封閉圖形的面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法錯(cuò)誤的是( 。
A.若直線a∥平面α,直線b∥平面α,則直線a不一定平行于直線b
B.若平面α不垂直于平面β,則α內(nèi)一定不存在直線垂直于平面β
C.若平面α⊥平面β,則α內(nèi)一定不存在直線平行于平面β
D.若平面α⊥平面v,平面β⊥平面v,α∩β=l,則l一定垂直于平面v

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人有3個(gè)電子郵箱,他要發(fā)5封不同的電子郵件,則不同的發(fā)送方法有( 。
A.8種B.15種C.35D.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式x2+2x<3的解集是(  )
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|x<-3或x>1}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對于項(xiàng)數(shù)為m的有窮數(shù)列{an},記bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk為a1,a2,…,ak中的最大值,并稱數(shù)列{bk}是{an}的控制數(shù)列.如1,3,2,5,5的控制數(shù)列是1,3,3,5,5.
(I)若各項(xiàng)均為正整數(shù)的數(shù)列{an}的控制數(shù)列為2,3,4,5,5,寫出所有符合條件的數(shù)列{an};
(II)設(shè)m=100,若an=|2n-4|,{bn}是{an}的控制數(shù)列,求(b1-a1)+(b2-a2)+…+(b100-a100)的值;
(III)設(shè){bn}是{an}的控制數(shù)列,滿足ak+bm-k+1=C(C為常數(shù),k=1,2,…,m).
求證:bk=ak(k=1,2,…,m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用0,2,4,8這四個(gè)數(shù)字能組成18個(gè)沒有重復(fù)數(shù)字的四位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.任取一個(gè)3位正整數(shù)n,則對數(shù)log2n是一個(gè)正整數(shù)的概率為( 。
A.$\frac{1}{300}$B.$\frac{1}{425}$C.$\frac{1}{450}$D.$\frac{1}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=8,a3=4.則$\frac{{3{a_n}-{S_n}}}{n}$的最小值為-4.

查看答案和解析>>

同步練習(xí)冊答案