給出如下四個(gè)命題:①方程表示的圖形是圓;②橢圓橢圓的離心率;③拋物線的準(zhǔn)線的方程是;④雙曲線的漸近線方程是。其中所有不正確命題的序號是           。
①②④
①表示的圖形是一個(gè)點(diǎn);②;④漸近線的方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足的軌跡為曲線E.

(I)求曲線E的方程;                                               
(II)過點(diǎn)A且傾斜角是45°的直線l交曲線E于兩點(diǎn)H、Q,求|HQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列曲線:①;②;③;④。其中與直線有交點(diǎn)的所有曲線是(      )
A.①③B.②④C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓和圓,且圓C與x軸交于A1,A2兩點(diǎn)(1)設(shè)橢圓C1的右焦點(diǎn)為F,點(diǎn)P的圓C上異于A1,A2的動(dòng)點(diǎn),過原點(diǎn)O作直線PF的垂線交橢圓的右準(zhǔn)線交于點(diǎn)Q,試判斷直線PQ與圓C的位置關(guān)系,并給出證明。  (2)設(shè)點(diǎn)在直線上,若存在點(diǎn),使得(O為坐標(biāo)原點(diǎn)),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),長軸在坐標(biāo)軸上,離心率為,短軸長為4,求橢圓標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓,直線與橢圓交于、兩點(diǎn),是線段的中點(diǎn),連接并延長交橢圓于點(diǎn)設(shè)直線與直線的斜率分別為,且,求橢圓的離心率.若直線經(jīng)過橢圓的右焦點(diǎn),且四邊形是平行四邊形,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線的兩焦點(diǎn),以線段F1F2為邊作正三角形MF1F2,若邊MF1的中點(diǎn)在雙曲線上,則雙曲線的離心率是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C1的左準(zhǔn)線為l,左右焦點(diǎn)分別為F1F­2,拋物線C2的準(zhǔn)線為l,一個(gè)焦點(diǎn)為F2,C1與C2的一個(gè)交點(diǎn)為P,則等于(   )
A.-1B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知斜率為1的直線l與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|•|BF|=17,證明:過A、B、D三點(diǎn)的圓與x軸相切.

查看答案和解析>>

同步練習(xí)冊答案