3.如圖,在△ABC中,已知點D在BC邊上,$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,sin∠BAD=$\frac{1}{3}$,sin∠ABD=$\frac{\sqrt{3}}{3}$,BD=1.
(Ⅰ)求AD的長;
(Ⅱ)求△ADC的面積.

分析 (Ⅰ)在△ADB中,由已知結合正弦定理求得AD的長;
(Ⅱ)利用三角形一個外角等于不相鄰兩內(nèi)角和求得sin∠ADC,進一步求得tan∠ADC,然后求解直角三角形得到AC,再由直角三角形中的面積公式求得答案.

解答 解:(Ⅰ)如圖
在△ADB中,∵sin∠BAD=$\frac{1}{3}$,sin∠ABD=$\frac{\sqrt{3}}{3}$,BD=1,
∴由正弦定理得:$\frac{AD}{sin∠ABD}=\frac{BD}{sin∠BAD}$,
∴AD=$\frac{sin∠ABD}{sin∠BAD}•BD=\frac{\frac{\sqrt{3}}{3}}{\frac{1}{3}}•1=\sqrt{3}$;
(Ⅱ)由圖可知,∠ABD與∠BAD均為銳角,
∵sin∠BAD=$\frac{1}{3}$,sin∠ABD=$\frac{\sqrt{3}}{3}$,
∴cos∠BAD=$\frac{2\sqrt{2}}{3}$,cos∠ABD=$\frac{\sqrt{6}}{3}$,
∴sin∠ADC=sin(∠ABD+∠BAD)=sin∠ABDcos∠BAD+cos∠ABDsin∠BAD
=$\frac{\sqrt{3}}{3}×\frac{2\sqrt{2}}{3}+\frac{\sqrt{6}}{3}×\frac{1}{3}=\frac{\sqrt{6}}{3}$.
∵$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,∴AD⊥AC,
則$cos∠ADC=\frac{\sqrt{3}}{3}$,∴$tan∠ADC=\sqrt{2}$,
∴$AC=\sqrt{2}AD=\sqrt{6}$,
∴△ADC的面積為$\frac{1}{2}×\sqrt{2}×\sqrt{6}=\sqrt{3}$.

點評 本題考查平面向量的數(shù)量積運算,考查了三角形的解法,考查數(shù)學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知命題p:函數(shù)y=ln$\sqrt{x-4}$為增函數(shù),命題q:函數(shù)y=$\frac{1}{tanx+1}$+tanx+2的最小值為3,則下列命題是真命題的是( 。
A.(¬p)∧qB.p∧qC.¬(p∨q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設離散型隨機變量ξ的分布列為P(ξ=k)=$\frac{1}{n}$(k=1,2,…,n),如果P(ξ<4)=0.3,那么n的值為( 。
A.3B.4C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知$\sqrt{11-6\sqrt{2}}$的整數(shù)部分為a,小數(shù)部分為b.求a+b+$\frac{2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.根據(jù)下列條件,求雙曲線的標準方程:b=1,焦點為(0,±$\sqrt{7}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某電信有如下規(guī)定,若郵件大小在1MB(含1MB)以內(nèi),郵箱免費使用,若郵件超過1MB,則超過部分按每1KB收取管理費0.02元,現(xiàn)小李付了管理費20.48元,他的郵件大小為( 。
A.500KBB.1MBC.2MBD.4MB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知在直角坐標系中,O為坐標原點,$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(x,1)
(Ⅰ)若A,B,C可構成以角B為銳角的三角形,求x的取值范圍;
(Ⅱ)當x=3時,直線OC上是否存在點M,使$\overrightarrow{OA}$,$\overrightarrow{BM}$同方向?若存在,求點M的坐標,若不存在,說明理由;
(Ⅲ)若直線OC上存在點M,使$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系中,O為坐標原點,A,B,C三點滿足$\overrightarrow{AC}$=2$\overrightarrow{CB}$,已知A(1,cosx),B(1+cosx,cosx),x∈[0,$\frac{π}{2}$],f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)|$\overrightarrow{AB}$|.
(Ⅰ)求|$\overrightarrow{OC}$|的范圍;
(Ⅱ)若f(x)的最小值為-$\frac{3}{2}$,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.用card(M)表示非空有限集合M中所含的元素的個數(shù),已知card(P1)=card(P2),P1⊆P2,則在下列結論:①P1∪P2=P1;②P1∩P2=P2;③P2⊆P1;④P1=P2中,正確結論的數(shù)目是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案