【題目】在平面直角坐標(biāo)系xOy中,以O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點P的極坐標(biāo)為,曲線C的參數(shù)方程為(α為參數(shù)).
(1)寫出點P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(2)若Q為曲線C上的動點,求PQ中點M到直線l:ρcos θ+2ρsin θ+1=0距離的最小值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根據(jù)參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)的公式得到曲線的直角坐標(biāo)方程;(2)用參數(shù)形式表示出點Q的坐標(biāo),根據(jù)點到直線的距離寫出表達(dá)式,由化一公式求得最值.
解析:
(1)由x=ρcos θ,y=ρsin θ可得點P的直角坐標(biāo)為(3,),由 (α為參數(shù))
得x2+(y+)2=4,
∴曲線C的直角坐標(biāo)方程為x2+(y+)2=4.
(2)直線l的普通方程為x+2y+1=0,
曲線C的參數(shù)方程為 (α為參數(shù)),
設(shè)Q(2cos α,-+2sin α),則M,
故點M到直線l的距離
d==
≥=-1,
∴點M到直線l的距離的最小值為-1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x 2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標(biāo);
(2)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-x2+2ax.
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,,分別為橢圓的左、右焦點,過的直線與相交于、兩點,的周長為.
(1)求橢圓的方程;
(2)若橢圓上存在點,使得四邊形為平行四邊形,求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=4x , 則f(﹣ )+f(1)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)設(shè), ,若函數(shù)存在零點,求的取值范圍;
(2)若是偶函數(shù),設(shè),若函數(shù)與的圖象只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 C:離心率,短軸長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,橢圓左頂點為A,過原點O的直線(與坐標(biāo)軸不重合)與橢圓C交于P,Q兩點,直線PA,QA分別與y軸交于M,N兩點.試問以MN為直徑的圓是否經(jīng)過定點?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com