【題目】已知函數(shù)f(x)=ex-x2+2ax.
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在R上單調遞增,求實數(shù)a的取值范圍.
【答案】(1) ex-y+1=0;(2) [ln 2-1,+∞).
【解析】試題分析:
(1)由函數(shù)的解析式可得f′(1)=e,f(1)=e+1,據(jù)此可得切線方程為ex-y+1=0.
(2)f′(x)=ex-2x+2a,則原問題等價于a≥x-在R上恒成立,令g(x)=x-,求導可得g(x)在(-∞,ln 2)上單調遞增,在(ln 2,+∞)上單調遞減,則g(x)max=g(ln 2)=ln 2-1,實數(shù)a的取值范圍為[ln 2-1,+∞).
試題解析:
(1)函數(shù)的解析式:f(x)=ex-x2+2x,
f′(x)=ex-2x+2,∴f′(1)=e,又f(1)=e+1,
∴所求切線方程為y-(e+1)=e(x-1),即ex-y+1=0.
(2)f′(x)=ex-2x+2a,∵f(x)在R上單調遞增,∴f′(x)≥0在R上恒成立,
∴a≥x-在R上恒成立,令g(x)=x-,
則g′(x)=1-,令g′(x)=0,則x=ln 2,
在(-∞,ln 2)上,g′(x)>0;在(ln 2,+∞)上,g′(x)<0,
∴g(x)在(-∞,ln 2)上單調遞增,在(ln 2,+∞)上單調遞減,
∴g(x)max=g(ln 2)=ln 2-1,∴a≥ln 2-1,∴實數(shù)a的取值范圍為[ln 2-1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.
(1)在平面PAD內(nèi)找一點M,使得直線CM∥平面PAB,并說明理由;
(2)證明:平面PAB⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷f(x)的奇偶性,說明理由;
(2)當x>0時,判斷f(x)的單調性并加以證明;
(3)若f(2t)-mf(t)>0對于t∈(0,+∞)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一塊正方形EFGH,EH所在直線是一條小河,收獲的蔬菜可送到F點或河邊運走.于是,菜地分別為兩個區(qū)域S1和S2 , 其中S1中的蔬菜運到河邊較近,S2中的蔬菜運到F點較近,而菜地內(nèi)S1和S2的分界線C上的點到河邊與到F點的距離相等,現(xiàn)建立平面直角坐標系,其中原點O為EF的中點,點F的坐標為(1,0),如圖
(1)求菜地內(nèi)的分界線C的方程;
(2)菜農(nóng)從蔬菜運量估計出S1面積是S2面積的兩倍,由此得到S1面積的經(jīng)驗值為 .設M是C上縱坐標為1的點,請計算以EH為一邊,另一邊過點M的矩形的面積,及五邊形EOMGH的面積,并判斷哪一個更接近于S1面積的經(jīng)驗值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線()與軸交于點,動圓與直線相切,并且與圓相外切,
(1)求動圓的圓心的軌跡的方程;
(2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間[0,1]上給定曲線y=x2.試在此區(qū)間內(nèi)確定點t的值,使圖中的陰影部分的面積S1與S2之和最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為P′( , );當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構成的曲線C′定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點A′,則點A′的“伴隨點”是點A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關于x軸對稱,則其“伴隨曲線”C′關于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是(寫出所有真命題的序列).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com