【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)與的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的范圍;
(2)討論的單調(diào)性.
【答案】(1);(2)當(dāng)時(shí),函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上遞減,在上遞增,在上遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
【解析】
試題分析:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的極值與零點(diǎn)個(gè)數(shù)以及分類討論思想的應(yīng)用;(1)作差,分離參數(shù)構(gòu)造函數(shù),通過導(dǎo)數(shù)研究函數(shù)的極值,再通過函數(shù)的圖象進(jìn)行求解;(2)求導(dǎo),確定導(dǎo)函數(shù)的兩個(gè)零點(diǎn),討論兩零點(diǎn)的大小進(jìn)行求解.
試題解析:(1)當(dāng)時(shí), ,
故,令,
則,
故當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;,,故.
(2)因?yàn)?/span>,所以.
當(dāng)時(shí),恒成立,故函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),時(shí),,時(shí),,當(dāng)時(shí),,
故函數(shù)在上遞減,在上遞增,在上遞減;當(dāng)時(shí),時(shí),,時(shí),,當(dāng)時(shí),;
故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上遞減,在上遞增,在上遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出(萬元)與銷售額(萬元)之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)據(jù)此估計(jì)廣告費(fèi)用為12萬元時(shí)的銷售額約為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, , , 為的中點(diǎn),連接,過點(diǎn)作交于點(diǎn),連接,已知.
(1)求證: ;
(2)若,求的長度;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市決定在其經(jīng)濟(jì)開發(fā)區(qū)一塊區(qū)域進(jìn)行商業(yè)地產(chǎn)開發(fā),截止2015年底共投資百萬元用于餐飲業(yè)和服裝業(yè),2016年初正式營業(yè),經(jīng)過專業(yè)經(jīng)濟(jì)師預(yù)算,從2016年初至2019年底的四年間,在餐飲業(yè)利潤為該業(yè)務(wù)投資額的,在服裝業(yè)可獲利該業(yè)務(wù)投資額的算術(shù)平方根.
(1)該市投資資金應(yīng)如何分配,才能使這四年總的預(yù)期利潤最大?
(2)假設(shè)自2017年起,該市決定對所投資的區(qū)域設(shè)施進(jìn)行維護(hù)保養(yǎng),同時(shí)發(fā)放員工獎(jiǎng)金,方案如下:2017年維護(hù)保養(yǎng)費(fèi)用百萬元,以后每年比上一年增加百萬元;2017年發(fā)放員工獎(jiǎng)金共計(jì)百萬元,以后每年的獎(jiǎng)金比上一年增加.若該市投資成功的標(biāo)準(zhǔn)是:從2016年初到2019的底,這四年總的預(yù)期利潤中值(預(yù)期最大利潤與最小利潤的平均數(shù))不低于總投資額的,問該市投資是否成功?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)遞減的奇函數(shù),當(dāng)時(shí), .
(1)求的值;
(2)求的解析式;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,曲線C:(x-1)2+y2=1.直線l經(jīng)過點(diǎn)P(m,0),且傾斜角為,以O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且|PA|·|PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合計(jì) |
工人數(shù)(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求這20名工人年齡的眾數(shù)與平均數(shù);
(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)從年齡在24和26的工人中隨機(jī)抽取2人,求這2人均是24歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),證明:;
(3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com