【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
【答案】
(1)解:a=1時,f(x)=|x+2|+|x﹣1|,
①x≥1時,x+2+x﹣1≤5,解得:x≤2;
②﹣2<x<1時,x+2+1﹣x=3≤5成立;
③x≤﹣2時,﹣x﹣2﹣x+1≤5,解得:x≥﹣3,
綜上,不等式的解集是[﹣3,2]
(2)解:若f(x)≥2對于x∈R恒成立,
即|x+2a|+|x﹣1|≥|2a+1|≥2,
解得:a≥ 或a≤﹣
【解析】(1)通過討論x的范圍,解關于x的不等式,取并集即可;(2)根據(jù)絕對值的性質得到|2a+1|≥2,解出即可.
【考點精析】通過靈活運用絕對值不等式的解法,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】若a和b是計算機在區(qū)間(0,3)上產(chǎn)生的隨機數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域為R的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國加入WTO時,根據(jù)達成的協(xié)議,某產(chǎn)品的市場供應量P與市場價格x的關系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關銳的稅率,且t∈[0, ),x為市場價格,b、k為正常數(shù)).當t=時的市場供應量曲線如圖所示.
(1)根據(jù)圖象求b、k的值;
(2)記市場需求量為Q,它近似滿足Q(x)=,當P=Q時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.
分數(shù)(分數(shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學進入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學恰好答滿4道題而獲得一等獎的概率;
②記該同學決賽中答題個數(shù)為X,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個實數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標原點作曲線y=f(x)的切線可以作( )
A.3條
B.2條
C.1條
D.0條
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學經(jīng)典名著,它在集合學中的研究比西方早1千年,在《九章算術》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( )
A.200π
B.50π
C.100π
D. π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足:在定義域內存在實數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com