【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:a=1時,f(x)=|x+2|+|x﹣1|,

①x≥1時,x+2+x﹣1≤5,解得:x≤2;

②﹣2<x<1時,x+2+1﹣x=3≤5成立;

③x≤﹣2時,﹣x﹣2﹣x+1≤5,解得:x≥﹣3,

綜上,不等式的解集是[﹣3,2]


(2)解:若f(x)≥2對于x∈R恒成立,

即|x+2a|+|x﹣1|≥|2a+1|≥2,

解得:a≥ 或a≤﹣


【解析】(1)通過討論x的范圍,解關(guān)于x的不等式,取并集即可;(2)根據(jù)絕對值的性質(zhì)得到|2a+1|≥2,解出即可.
【考點精析】通過靈活運(yùn)用絕對值不等式的解法,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a和b是計算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域為R的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國加入WTO時,根據(jù)達(dá)成的協(xié)議,某產(chǎn)品的市場供應(yīng)量P與市場價格x的關(guān)系近似滿足P(x)=2(1-kt)(xb)2(其中t為關(guān)銳的稅率,且t[0, ),x為市場價格,b、k為正常數(shù)).當(dāng)t時的市場供應(yīng)量曲線如圖所示.

(1)根據(jù)圖象求b、k的值;

(2)記市場需求量為Q,它近似滿足Q(x)=,當(dāng)PQ時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.

(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合計

50

1


(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個實數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標(biāo)原點作曲線y=f(x)的切線可以作(
A.3條
B.2條
C.1條
D.0條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號是______________.

查看答案和解析>>

同步練習(xí)冊答案