分析 (1)由已知得${a_n}=4{q^{n-1}}$,由等差中項(xiàng)性質(zhì)得2q2-5q+2=0,由此能求出數(shù)列{an}的通項(xiàng)公式;由題意,數(shù)列{bn}為等差數(shù)列,公差d=1,再由S2+S4=32,得b1=2,由此能求出數(shù)列{bn}的通項(xiàng)公式.
(2)由已知${T_n}=\frac{{4({2^n}-1)}}{2-1}={2^{n+2}}-4$,從而$λ≤\frac{{{n^2}-n+7}}{n+1}$對(duì)一切n∈N+恒成立,由此能求出結(jié)果.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,則q>1,${a_n}=4{q^{n-1}}$,
∵$\frac{5}{4}{a_3}$是a2和a4的等差中項(xiàng),∴$2×\frac{5}{4}{a_3}={a_2}+{a_4}$,即2q2-5q+2=0.
∵q>1,∴q=2,∴${a_n}=4•{2^{n-1}}={2^{n+1}}$…(3分)
依題意,數(shù)列{bn}為等差數(shù)列,公差d=1,
又S2+S4=32,∴$(2{b_1}+1)+6{b_1}+\frac{6×5}{2}=32$,∴b1=2,
∴bn=n+1.…(6分)
(2)∵${a_n}={2^{n+1}}$,∴${T_n}=\frac{{4({2^n}-1)}}{2-1}={2^{n+2}}-4$.
不等式nlog2(Tn+4)-λbn+7≥3n化為n2-n+7≥λ(n+1)…(9分)
∵n∈N+,∴$λ≤\frac{{{n^2}-n+7}}{n+1}$對(duì)一切n∈N+恒成立.
而$\frac{{{n^2}-n+7}}{n+1}=\frac{{{{(n+1)}^2}-3(n+1)+9}}{n+1}=(n+1)+\frac{9}{n+1}-3≥2\sqrt{(n+1)•\frac{9}{n+1}}-3=3$,
當(dāng)且僅當(dāng)$n+1=\frac{9}{n+1}$即n=2時(shí)等式成立.
∴λ≤3…(12分)
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com