分析 利用遞推關系猜想并利用數(shù)學歸納法即可得出.
解答 解:f(1)=1-a1=1-$\frac{1}{{2}^{2}}$=$\frac{3}{4}$,
同理可得:f(2)=$\frac{4}{6}$,f(3)=$\frac{5}{8}$,f(4)=$\frac{6}{10}$,
猜想:f(n)=$\frac{n+2}{2(n+1)}$,
證明如下:
(1)當n=1時,f(1)=$\frac{3}{4}$=$\frac{1+2}{2×(1+1)}$,公式成立.
(2)假設當n=k時成立,即f(k)=$\frac{k+2}{2(k+1)}$.
那么f(k+1)=f(k)(1-ak+1)=$\frac{k+2}{2(k+1)}$$[1-\frac{1}{(k+2)^{2}}]$=$\frac{(k+1)+2}{2[(k+1)+1]}$.
由(1)(2)可知,f(n)=$\frac{n+2}{2(n+1)}$,對任何n∈N*都成立.
點評 本題考查了猜想、數(shù)學歸納法、數(shù)列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com