分析 由已知利用等差數(shù)列的性質(zhì)及三角形內(nèi)角和定理可求B,利用余弦定理,基本不等式可求ac≤4,進(jìn)而利用三角形面積公式即可計(jì)算得解.
解答 解:由2B=A+C,A+B+C=π,得B=$\frac{π}{3}$,
由余弦定得b2=a2+c2-2accosB=4,
即a2+c2-ac=4,
又a2+c2≥2ac,(當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立),得ac≤4,
所以S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac$≤\sqrt{3}$,即△ABC面積的最大值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),三角形內(nèi)角和定理,余弦定理,基本不等式,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 5 | ||
不獲獎(jiǎng) | 115 | ||
合計(jì) | 200 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{56}$ | B. | $\frac{9}{28}$ | C. | $\frac{9}{14}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com