(本題滿分10分)
如圖,在三棱柱中,平面, ,點(diǎn)是的中點(diǎn).
求證:(1);(2)平面.
證明:(1)先證明再證平面,推出.
(2)設(shè)與的交點(diǎn)為,連結(jié),推出是三角形的中位線進(jìn)一步推出平面.
【解析】
試題分析:證明:(1)平面,平面
,,,
平面,
平面
. -------------------5分
(2)設(shè)與的交點(diǎn)為,連結(jié), 為平行四邊形,所以為中點(diǎn),又是的中點(diǎn),所以是三角形的中位線,,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013090813052938241048/SYS201309081305518243843532_DA.files/image023.png">平面,平面,所以平面. ---------------------10分
考點(diǎn):本題主要考查立體幾何中線面垂直、線面平行。
點(diǎn)評:典型題,立體幾何中線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化是高考重點(diǎn)考查內(nèi)容,證明過程中要特別重要表達(dá)的準(zhǔn)確性與完整性。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個最值點(diǎn)是和(1)求函數(shù);(2)設(shè),問將函數(shù)的圖像經(jīng)過怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)
(Ⅰ)設(shè),求證:;
(Ⅱ)設(shè),求證:三數(shù),,中至少有一個不小于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,
⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測試數(shù)學(xué)試卷 題型:解答題
(本題滿分10分)
如圖,已知正三棱柱的所有棱長都為2,為棱的中點(diǎn),
(1)求證:平面;
(2)求二面角的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分10分)
如圖,要計算西湖岸邊兩景點(diǎn)與的距離,由于地形的限制,需要在岸上選取和兩點(diǎn),現(xiàn)測得,,, ,,求兩景點(diǎn)與的距離(精確到0.1km).參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com