【題目】已知函數(shù)
(1)若曲線 處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),求 及該切線的方程;
(2)設(shè) ,若函數(shù) 的值域?yàn)? ,求實(shí)數(shù) 的取值范圍.

【答案】
(1)解:由已知得 ),
,所以 ,
所以所求切線方程為
(2)解:令 ,得 ;令 ,得 . 
所以 上單調(diào)遞減,在 上單調(diào)遞增,
所以 ,所以 .
上單調(diào)遞增,所以 .
欲使函數(shù) 的值域?yàn)? ,須 .
①當(dāng) 時(shí),只須 ,即 ,所以 .
②當(dāng) 時(shí), , ,
只須 對(duì)一切 恒成立,即 對(duì)一切 恒成立,
,得 ,
所以 上為增函數(shù),
所以 ,所以 對(duì)一切 恒成立.
綜上所述:
【解析】(1)根據(jù)題目中所給的條件的特點(diǎn),先求出原函數(shù)的導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程,
(2)根據(jù)導(dǎo)數(shù)的應(yīng)用先求出函數(shù)f(x)的值域、g(x)的值域,再根據(jù)分段函數(shù)F(x)的值域?yàn)橐磺袑?shí)數(shù),分類討論可求出a的范圍.
導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù),f′(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù),f′(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的焦點(diǎn)到漸進(jìn)線的距離等于實(shí)半軸長(zhǎng),則該雙曲線的離心率為( )
A.
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 的右頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,過(guò)點(diǎn) 且斜率為 的直線與 軸交于點(diǎn) ,與橢圓交于另一個(gè)點(diǎn) ,且點(diǎn) 軸上的射影恰好為點(diǎn)

(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn) 的直線與橢圓交于 兩點(diǎn)( 不與 重合),若 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間中, 是兩條不同的直線, 是兩個(gè)不同的平面,則下列命題中的真命題是( )
A.若 , ,則
B.若 , ,則
C.若 , ,則
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(Ⅰ)當(dāng) 時(shí),求不等式 的解集;
(Ⅱ)若 的解集包含 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在 上的函數(shù) 滿足 ,且 是偶函數(shù),當(dāng) 時(shí), .令 ,若在區(qū)間 內(nèi),函數(shù) 有4個(gè)不相等實(shí)根,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為: 為參數(shù)),兩曲線相交于 兩點(diǎn).
(1)寫出曲線 的直角坐標(biāo)方程和直線 的普通方程;
(2)若 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 軸的交點(diǎn)為 ,且圖象上兩對(duì)稱軸之間的最小距離為 ,則使 成立的 的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案