【題目】已知函數(shù), , 的解集為.
(Ⅰ)求的值;
(Ⅱ)若成立,求實(shí)數(shù)的取值范圍.
【答案】(1)m=3;(2)t≤1或t≥
【解析】【試題分析】(1)依據(jù)題設(shè)條件運(yùn)用絕對(duì)值的定義進(jìn)行化簡(jiǎn)求解;(2)借助(1)的結(jié)論,先將問(wèn)題等價(jià)轉(zhuǎn)化,再建立不等式進(jìn)行求解:
解:(I)∵函數(shù)f(x)=|x+3|﹣m+1,m>0, f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞).
所以f(x﹣3)=|x|﹣m+1≥0,
所以|x|≥m﹣1的解集為為(﹣∞,﹣2]∪[2,+∞).所以m﹣1=2,所以m=3;
(II)由(I)得f(x)=|x+3|﹣2
∵x∈R,f(x)≥|2x﹣1|﹣t2+t 成立
即x∈R,|x+3|﹣|2x﹣1|≥﹣t2+t+2成立
令g(x)=|x+3|=|2x﹣1|=
故g(x)max=g()=
則有|≥﹣t2+t+2,即|2t2﹣5t+3≥0.
解得t≤1或t≥,∴實(shí)數(shù)t的取值范圍是t≤1或t≥
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的方程為,其中.
(1)求證:直線(xiàn)恒過(guò)定點(diǎn);
(2)當(dāng)變化時(shí),求點(diǎn)到直線(xiàn)的距離的最大值;
(3)若直線(xiàn)分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(xiàn),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn).
(1)將曲線(xiàn)上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍后得到曲線(xiàn).試寫(xiě)出直線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的參數(shù)方程:
(2)在曲線(xiàn)上求一點(diǎn),使點(diǎn)到直線(xiàn)的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司做了用戶(hù)對(duì)其產(chǎn)品滿(mǎn)意度的問(wèn)卷調(diào)查,隨機(jī)抽取了20名用戶(hù)的評(píng)分,得到圖3所示莖葉圖,對(duì)不低于75的評(píng)分,認(rèn)為用戶(hù)對(duì)產(chǎn)品滿(mǎn)意,否則,認(rèn)為不滿(mǎn)意,
(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯(cuò)的概率不超過(guò)5%的前提下,你是否認(rèn)為“滿(mǎn)意與否”與“性別”有關(guān)?
附:
(Ⅱ) 估計(jì)用戶(hù)對(duì)該公司的產(chǎn)品“滿(mǎn)意”的概率;
(Ⅲ) 該公司為對(duì)客戶(hù)做進(jìn)一步的調(diào)查,從上述對(duì)其產(chǎn)品滿(mǎn)意的用戶(hù)中再隨機(jī)選取2人,求這兩人都是男用戶(hù)或都是女用戶(hù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程.
已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)若直線(xiàn)的極坐標(biāo)方程為,求直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實(shí)數(shù)a≥0.
(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com