【題目】選修4—4:坐標(biāo)系與參數(shù)方程.

已知曲線的參數(shù)方程為為參數(shù),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

1求曲線的極坐標(biāo)方程;

2若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長.

【答案】1 2

【解析】

試題分析:1 利用,即可把參數(shù)方程轉(zhuǎn)化為平面直角坐標(biāo)系方程,然后在利用就可以把方程化成極坐標(biāo)方程;

21知曲線的平面直角坐標(biāo)系方程為圓的方程,直線的極坐標(biāo)方程為為直線,然后利用弦長公式就可求解.

試題解析:曲線的參數(shù)方程為 為參數(shù)

曲線的普通方程為

曲線 表示以 為圓心, 為半徑的圓。

代入并化簡:

即曲線的極坐標(biāo)方程為 .

的直角坐標(biāo)方程為

圓心到直線的距離為

弦長為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求的單調(diào)區(qū)間;

)若曲線有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 時(shí),求函數(shù)的單調(diào)區(qū)間

討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn),且圓的圓心到的距離為.

(1)求直線被該圓所截得的弦長;

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , 的解集為

(Ⅰ)求的值;

(Ⅱ)若成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;

2證明:對任意的,總存在,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某高中進(jìn)行一項(xiàng)調(diào)查:2012年至2016年本校學(xué)生人均年求學(xué)花銷(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

年份代號

1

2

3

4

5

年求學(xué)花銷

3.2

3.5

3.8

4.6

4.9

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2012年至2016年本校學(xué)生人均年求學(xué)花銷的變化情況,并預(yù)測該地區(qū)2017年本校學(xué)生人均年求學(xué)花銷情況.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直三棱柱中,,分別是的中點(diǎn).

)求證:平面;

)若,,,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為為參數(shù),),直線的參數(shù)方程為為參數(shù)).

(1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的極坐標(biāo);

(2)設(shè)直線與曲線有兩個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案