【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如表對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求廣告費支出x與銷售額y回歸直線方程 =bx+a(a,b∈R);
已知b= ,
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.
【答案】
(1)解:由題意得 , , ,
,
所求回歸直線方程為
(2)解:基本事件:(30,40),(30,60),(30,50),(30,70),
(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10個
兩組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值都超過5:(60,50)
所以至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率為
【解析】(1)首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.(2)分別求出在已有的五組數(shù)據(jù)中任意抽取兩組的情況總數(shù),及至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的情況數(shù),代入古典概型概率計算公式,可得答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知X和Y是兩個分類變量,由公式K2= 算出K2的觀測值k約為7.822根據(jù)下面的臨界值表可推斷( )
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.推斷“分類變量X和Y沒有關(guān)系”犯錯誤的概率上界為0.010
B.推斷“分類變量X和Y有關(guān)系”犯錯誤的概率上界為0.010
C.有至少99%的把握認(rèn)為分類變量X和Y沒有關(guān)系
D.有至多99%的把握認(rèn)為分類變量X和Y有關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)﹣ax在區(qū)間(0,3]上有三個零點,則實數(shù)a的取值范圍是( )
A.(0, )
B.( ,e)
C.(0, ]
D.[ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f′′(x)是f′(x)的導(dǎo)數(shù),若方程f′′(x)有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.設(shè)函數(shù)f(x)= x3﹣ x2+3x﹣ ,請你根據(jù)這一發(fā)現(xiàn),計算f( )+f( )+f( )+…+f( )= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場預(yù)測, 產(chǎn)品的利潤與投資額成正比(如圖1),產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(1)分別將兩種產(chǎn)品的利潤、表示為投資額的函數(shù);
(2)該團(tuán)隊已籌集到10 萬元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問:當(dāng)產(chǎn)品的投資額為多少萬元時,生產(chǎn)兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:
求分?jǐn)?shù)在的頻率及全班人數(shù);
求分?jǐn)?shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列各組中兩個函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=;
(4)f(x)=|3﹣x|+1,g(x)= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com