【題目】判斷下列各組中兩個(gè)函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=;
(4)f(x)=|3﹣x|+1,g(x)=

【答案】解:(1)f(x)與g(x)只是表示自變量的字母不同,是同一函數(shù);
(2)f(x)需滿足x≠1,g(x)中x可以等于1,∴不是同一函數(shù);
(3)f(x)的定義域?yàn)閇0,+∞),g(x)的定義域?yàn)椋ī仭,?]∪[0,+∞),∴不是同一函數(shù);
(4)f(x)=|3﹣x|+1=,顯然f(x)=g(x),是同一函數(shù).
【解析】通過(guò)判斷函數(shù)的解析式,及定義域即可判斷每組函數(shù)是否為同一函數(shù).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用判斷兩個(gè)函數(shù)是否為同一函數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有如表對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)求廣告費(fèi)支出x與銷售額y回歸直線方程 =bx+a(a,b∈R);
已知b= ,
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過(guò)5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓上的動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線段, 為垂足,點(diǎn)滿足.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)若兩點(diǎn)分別為橢圓的左右頂點(diǎn), 為橢圓的左焦點(diǎn),直線與橢圓交于點(diǎn),直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,證明: 上存在唯一零點(diǎn);

(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當(dāng)a=4時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的定義域:
(1)f(x)=log2
(2)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx> 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與過(guò)點(diǎn)M(- ),N( ,- )的直線垂直,則直線l的傾斜角是( ).
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案