【題目】已知g(x)是定義在R上的奇函數(shù),且當x<0時,g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

【答案】C
【解析】解:∵g(x)是定義在R上的奇函數(shù),且當x<0時,g(x)=﹣ln(1﹣x), ∴當x>0時,﹣x<0,g(﹣x)=﹣ln(1+x),
即當x>0時,g(x)=ln(1+x),
∵函數(shù)f(x)= ,
∴函數(shù)f(x)= ,

可判斷f(x)= ,在(﹣∞,+∞)單調遞增,
∵f(2﹣x2)>f(x),
∴2﹣x2>x,
解得:﹣2<x<1,
故選:C
【考點精析】本題主要考查了函數(shù)奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,P是雙曲線在第一象限上的點且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點N,又點M滿足 = 且∠MF2N=120°,則雙曲線C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣ |﹣|2x+1|. (Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)的最大值時a,已知x,y,z均為正實數(shù),且x+y+z=a,求證: + + ≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關于點( ,0)對稱?
B.關于直線x= 對稱
C.關于點( ,0)對稱?
D.關于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD= ,點F是PB的中點,點E在邊BC上移動.
(1)證明:無論點E在BC邊的何處,都有PE⊥AF;
(2)當BE等于何值時,PA與平面PDE所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點,且CD=DE= ,CE=2EB=2.

(Ⅰ)證明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在 上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關于θ的函數(shù)關系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式x2+(a﹣1)x+1<0有解,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且
(1)求A的大;
(2)若 ,D是BC的中點,求AD的長.

查看答案和解析>>

同步練習冊答案