【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且
(1)求A的大;
(2)若 ,D是BC的中點,求AD的長.

【答案】
(1)解:由正弦定理,得: ,

,

由余弦定理可得:cosA= = =﹣ ,

∵0<A<π,

∴A=


(2)解:將 ,代入a2=b2+c2+ bc,可得:c2+6c﹣72=0,

因為c>0,所以c=6

又∵ = ),

∴| |2= 2= (c2+2cbcosA+b2)= ,

所以


【解析】(1)由正弦定理,得 ,結(jié)合余弦定理可得:cosA=﹣ ,結(jié)合范圍0<A<π,即可得解A的值.(2)由已知及(1)利用余弦定理可求c的值,又 = ),平方后即可得解AD的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知g(x)是定義在R上的奇函數(shù),且當x<0時,g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當x>0時,有 恒成立,則不等式x2f(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin(ωx+φ)的圖象向左平移 個單位.若所得圖象與原圖象重合,則ω的值不可能等于(
A.4
B.6
C.8
D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知F1、F2是橢圓G: 的左、右焦點,直線l:y=k(x+1)經(jīng)過左焦點F1 , 且與橢圓G交于A、B兩點,△ABF2的周長為
(Ⅰ)求橢圓G的標準方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(I)求證:AC⊥BD;
(II)若二面角B﹣AC﹣D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

同步練習冊答案