【題目】已知圓G:x2+y2-x-y=0,經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)(m,0)(m>a)且傾斜角為的直線l交橢圓于C,D兩點(diǎn).

1)求橢圓的方程;

2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

【答案】1. 2

【解析】

(1)利用圓經(jīng)過點(diǎn).求出,得到,求出.寫出橢圓的方程.
(2)設(shè)直線的方程為.聯(lián)立方程組消去,設(shè),利用韋達(dá)定理,結(jié)合數(shù)量積小于0,求解的范圍.

1)∵圓G:x2+y2-x-y=0經(jīng)過點(diǎn)F,B,

, 所以 c=1,b=,

a2=4,故橢圓的方程為

2)易得直線的方程為y=-(x-m)(m>2).

消去y,得7x2-8mx+(4m2-12)=0.

設(shè)C(x1,y1),D(x2,y2), 則,,

y1y2=[-(x1-m)]·[-(x2-m)]

=x1x2-m(x1+x2)+m2.

=(x1-1,y1),=(x2-1,y2),

=(x1-1)(x2-1)+y1y2

=x1x2-(x1+x2)+1+y1y2

=2x1x2-(m+1)(x1+x2)+1+m2

=.

∵點(diǎn)F在圓E的內(nèi)部,

,即,

解得.

=64m2-28(4m2-12)>0,

解得-.

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x2)f(x),且當(dāng)x∈[1,1]時(shí),f(x)x2.g(x)f(x)kxk,若在區(qū)間[1,3]內(nèi),函數(shù)g(x)04個(gè)不相等實(shí)根,則實(shí)數(shù)k的取值范圍是(  )

A.(0,+∞)B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,規(guī)定排放時(shí)污染物的殘留含量不得超過1%.已知在過濾過程中的污染物的殘留數(shù)量P(單位:毫克/升)與過濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:為正常數(shù),為原污染物數(shù)量).若前5個(gè)小時(shí)廢氣中的污染物被過濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過濾(

A. 小時(shí)B. 小時(shí)C. 5小時(shí)D. 小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數(shù)Vr),并求該函數(shù)的定義域;

2)討論函數(shù)Vr)的單調(diào)性,并確定rh為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點(diǎn),且|M1M2|=8.

1)求p的值;

2)設(shè)A是直線y=上一點(diǎn),直線AM2交拋物線于另一點(diǎn)M3,直線M1M3交直線y=于點(diǎn)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬元).

地區(qū)

上海

江蘇

浙江

安徽

福建

職工平均工資

9.8

6.9

6.4

6.2

5.6

城鎮(zhèn)居民消費(fèi)水平

6.6

4.6

4.4

3.9

3.8

(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程,其中;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1萬,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)、專業(yè)二等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)及專業(yè)三等獎(jiǎng)學(xué)金(獎(jiǎng)金額元),且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.

(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);

(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?

(Ⅲ)若以頻率作為概率,從該校任選一名學(xué)生,記該學(xué)生年獲得的專業(yè)獎(jiǎng)學(xué)金額為隨機(jī)變量,求隨機(jī)變量的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案