設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項和.已知a2a4=1,S3=7,則S5=( 。
A、
15
2
B、
17
2
C、
31
4
D、
33
4
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得a3=1,再由S3=
1
q2
+
1
q
+1=7可得q=
1
2
,進而可得a1的值,由求和公式可得.
解答: 解:設(shè)由正數(shù)組成的等比數(shù)列{an}的公比為q,則q>0,
由題意可得a32=a2a4=1,解得a3=1,
∴S3=
1
q2
+
1
q
+1=7,解得q=
1
2
,或q=-
1
3
(舍去),
∴a1=
1
q2
=4,
∴S5=
4×(1-
1
25
)
1-
1
2
=
31
4

故選:C
點評:本題考查等比數(shù)列的求和公式,求出數(shù)列的公比是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R且a+b=3,b>0,則當
1
3|a|
+
|a|
b
取得最小值時,實數(shù)a的值是(  )
A、
3
2
B、-
3
2
C、-
3
2
3
4
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,且滿足Sn2=n2an+Sn-12(n≥2,n∈N+)又已知a1=0,an≠0,n=2,3,4…
(1)計算a2,a3,并求數(shù)列{a2n}的通項公式;
(2)若bn=(
1
2
an,Tn為數(shù)列{bn}的前n項和,求證:Tn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在{x|x≠0,x∈R}上的函數(shù)f(x)滿足對于任意的x1,x2,有f(x1•x2)=f(x1)+f(x2
(1)求f(1)和f(-1);
(2)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(3)如果f(
6
)=1,且f(x)在(0,+∞)上是增函數(shù),問是否存在正實數(shù)a,使f(x)+f(x-a)≤2在區(qū)間[1-a,1+a]上恒成立,若存在,試求出a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對?x∈[
2
,4],
5
2
x2≥m(x-1)恒成立,則實數(shù)m的取值范圍是( 。
A、(-∞,5
2
-5]
B、(-∞,
10
3
]
C、(-∞,10)
D、(-∞,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a-e x
1+e x
(a∈R).
(1)若f(x)為R上的奇函數(shù),求a的值;
(2)若f(x)在R上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=t-m
y=t
(t為參數(shù)),圓C的極坐標方程為:ρ2=2ρcosθ+3.
(1)若直線與圓相切,求實數(shù)m的值;
(2)當m=1時,求直線l截圓C所得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-y-2≤0
x+2y-5≥0
y-2≤0
,則z=
2x+y
x
的最小值是( 。
A、
7
3
B、
1
3
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC,D是AC的中點,DE平分∠ADB,交AB于E,過A,D,E的圓交BD于N,若AE=
3
2
,則BN=
 

查看答案和解析>>

同步練習(xí)冊答案