已知函數(shù)f(x)在x=1處的導(dǎo)數(shù)為2,則
lim
h→0
f(1-h)-f(1+h)
h
的值為(  )
A、-4B、-1C、4D、1
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的定義得到
lim
h→0
f(1-h)-f(1+h)
-2h
=2,從而得出答案.
解答: 解:∵f(x)在x=1處的導(dǎo)數(shù)為2,
lim
h→0
f(1-h)-f(1+h)
-2h
=2,
lim
h→0
f(1-h)-f(1+h)
h
=-4,
故選:A.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的定義,導(dǎo)數(shù)的運(yùn)算,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:“直線x+y-m=0與圓(x-1)2+y2=1相交”,q:“m2-4m<0”若p∪q為真命題,¬p為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖給出的是計(jì)算1+
1
3
+
1
5
+
1
7
+
1
9
的值的一個(gè)程序框圖,則圖中執(zhí)行框中的①處和判斷框中的②處應(yīng)填的語(yǔ)句分別是( 。
A、n=n+2,i>5?
B、n=n+2,i=5?
C、n=n+1,i=5?
D、n=n+1,i>5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
2
-
π
2
sinxdx的值是( 。
A、1B、0C、-1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)之比為
3
:1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的右焦點(diǎn),T為直線x=t(t∈R,t≠2)上縱坐標(biāo)不為0的任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(。┤鬙T平分線段PQ(其中O為坐標(biāo)原點(diǎn)),求t的值;
(ⅱ)在(。┑臈l件下,當(dāng)
|TF|
|PQ|
最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(
x
2
-
π
3
)+1(x∈R)的最小正周期、最大值依次為( 。
A、4π,3B、4π,2
C、2π,3D、2π,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga
x-2a
x+2a
(a>0,a≠1)
(1)若a=2,求f(x)的定義域和值域;
(2)若函數(shù)的定義域?yàn)閇s,t],則函數(shù)的值域?yàn)閇loga(t-a),loga(s-a)],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?的ABCD頂點(diǎn)A,B,C的坐標(biāo)分別為(-2,1),(-1,3),(3,4),則頂點(diǎn)D的坐標(biāo)為( 。
A、(4,6)
B、(2,2)
C、(0,0)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A是銳角,且
3
b=2asinB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=7,△ABC的面積為10
3
,求b2+c2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案