14.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),則下列向量中與向量2$\overrightarrow{a}$+$\overrightarrow$垂直的是( 。
A.$\overrightarrow{a}$+$\overrightarrow$B.$\overrightarrow{a}$-$\overrightarrow$C.2$\overrightarrow{a}$-$\overrightarrow$D.$\overrightarrow{a}$-2$\overrightarrow$

分析 根據(jù)坐標(biāo)運(yùn)算求出2$\overrightarrow{a}$+$\overrightarrow$和$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo),計(jì)算即可.

解答 解:$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),
則2$\overrightarrow{a}$+$\overrightarrow$=(2,1),
而$\overrightarrow{a}$-2$\overrightarrow$=(1,-2),
故(2$\overrightarrow{a}$+$\overrightarrow$)($\overrightarrow{a}$-2$\overrightarrow$)=0,
故選:D.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算,考查向量的垂直關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$α∈({0,\frac{π}{4}})$,$sin({α+\frac{π}{4}})=\frac{4}{5}$,則tanα=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)M(4,t)在拋物線x2=4y上,則點(diǎn)M到焦點(diǎn)的距離為( 。
A.5B.6C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.空間四邊形OABC中,M,N分別是對(duì)邊OA,BC的中點(diǎn),點(diǎn)G為MN中點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OG}$可以用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示為( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)A,B分別是直線$y=\frac{{\sqrt{2}}}{2}x$和$y=-\frac{{\sqrt{2}}}{2}x$上的動(dòng)點(diǎn),且$|AB|=2\sqrt{2}$.設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ) 求動(dòng)點(diǎn)P的軌跡方程C1;
(Ⅱ)一直雙曲線C2以C1的上頂點(diǎn)為焦點(diǎn),且一條漸近線方程為x+2y=0,求雙曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)P時(shí)拋物線y2=-4x上的動(dòng)點(diǎn),設(shè)點(diǎn)P到此拋物線的準(zhǔn)線的距離為d1,到直線x+y-4=0的距離為d2,則d1+d2的最小值是( 。
A.2B.$\sqrt{2}$C.$\frac{5}{2}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>c)的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過原點(diǎn)O的直線(與x軸不重合)與橢圓C相交于D、Q兩點(diǎn),且|DF1|+|QF1|=4,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積的最大值為$\sqrt{3}$.
(1)求橢圓C的離心率;
(2)若過左焦點(diǎn)F1的任意直線與橢圓C相交于S、T兩點(diǎn),求$\overrightarrow{OS}$$•\overrightarrow{OT}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x∈R,則“x>2”是“x2-3x+2>0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,直線l1:kx-y+2=0與直線l2:x+ky-2=0相交于點(diǎn)P,則當(dāng)實(shí)數(shù)k變化時(shí),點(diǎn)P到直線x-y-4=0的距離的最大值為3$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案