精英家教網 > 高中數學 > 題目詳情
14.已知函數f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上單調遞減函數,則實數m的取值范圍m≤-1.

分析 若函數f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上單調遞減函數,則$\left\{\begin{array}{l}\frac{\sqrt{3-m}}{m}≥\frac{1}{m}-1\\ \frac{1}{m}<0\end{array}\right.$,解得實數m的取值范圍

解答 解:若函數f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{3-mx}}{m}(0<x≤1)}\\{\frac{1}{m}x-1(x>1)}\end{array}\right.$在(0,+∞)上單調遞減函數,
則$\left\{\begin{array}{l}\frac{\sqrt{3-m}}{m}≥\frac{1}{m}-1\\ \frac{1}{m}<0\end{array}\right.$,
解得:m≤-1,
故答案為:m≤-1.

點評 本題考查的知識點是分段函數的應用,正確理解分段函數單調性的意義,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.設min{p,q,r}為表示p,q,r三者中較小的一個,若函數f(x)=min{x+1,-2x+7,x2-x+1},且函數f(x)的圖象與直線y=m有四個交點,則m的取值范圍是( 。
A.[$\frac{3}{4}$,1]B.[$\frac{3}{4}$,1)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},則M∩N=( 。
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.△ABC中,若三個角∠A、∠B、∠C及其所對的邊a,b,c均成等差數列,△ABC的面積為4$\sqrt{3}$,且∠B=$\frac{π}{3}$,那么b=4.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.頂點在單位圓上的△ABC中,角A,B,C所對的邊分別為a,b,c.若b2+c2=5,$sinA=\frac{{\sqrt{3}}}{2}$,則S△ABC=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若m,n滿足m+n-1=0,則直線mx+y+n=0過定點( 。
A.(1,-1)B.(0,-n)C.(0,0)D.(-1,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.過點A(1,0)的直線l的傾斜角為$α(0<α<\frac{π}{2})$,直線l繞點A逆時針旋轉$\frac{π}{3}$角度得到直線y=1-x.
(1)求角α及$cos(\frac{π}{6}-α)$的值;
(2)圓心角為α的扇形周長c為4.求當扇形的面積取最大值時,扇形的半徑r及弧長l.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(-2,0),且被圓C1截得的弦長為2$\sqrt{3}$,求直線l的方程;
(II)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若S△MON=6tan∠MON,其中O為坐標原點,求|MN|.

查看答案和解析>>

同步練習冊答案