3.已知tanα=3,α∈(0,π),則cos(${\frac{5π}{2}$+2α)=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

分析 利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值得到cos(${\frac{5π}{2}$+2α)=-sin2α.直接把sin2α轉(zhuǎn)化為:2sinαcosα=$\frac{2sinαcosα}{1}$=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$,再把已知條件代入即可得到結(jié)論.

解答 解:∵tanα=3,
∴cos(${\frac{5π}{2}$+2α)
=cos($\frac{π}{2}$+2α)
=-sin2α
=-2sinαcosα
=-$\frac{2sinαcosα}{1}$
=-$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$
=-$\frac{2tanα}{1+ta{n}^{2}α}$
=-$\frac{2×3}{1+{3}^{2}}$
=-$\frac{3}{5}$.
故選:C.

點(diǎn)評(píng) 本題主要考查二倍角公式的應(yīng)用以及'1'的代換.解決本題的關(guān)鍵在于把sin2α轉(zhuǎn)化為:2sinαcosα=$\frac{2sinαcosα}{1}$=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+2ta{n}^{2}α}$.考查公式的熟練應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.$\sqrt{3}+1$與$\sqrt{3}-1$,兩數(shù)的等比中項(xiàng)是( 。
A.1B.-1C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知點(diǎn)F1,F(xiàn)2是橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦點(diǎn),點(diǎn)P是橢圓C2:$\frac{x^2}{2}$+y2=1上異于其長(zhǎng)軸端點(diǎn)的任意動(dòng)點(diǎn),直線PF1,PF2與橢圓C1的交點(diǎn)分別是A,B和M,N,記直線AB,MN的斜率分別為k1,k2
(1)求證:k1•k2為定值;
(2)求|AB|•|MN|得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知兩個(gè)等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{29}{38}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知點(diǎn)(3,9)在函數(shù)f(x)=1+ax的圖象上,則log${\;}_{\frac{1}{4}}$a+loga8=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,點(diǎn)M在線段EC上.
(Ⅰ)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$時(shí),求棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,底面ABCD為菱形,E、P、Q分別是棱AD、SC、AB的中點(diǎn),且SE⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:平面SAC⊥平面SEQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1-m)+f(1+m2)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案