9.函數(shù)$f(x)=tan(2x+\frac{π}{6})-1$在(0,π)上的零點是$\frac{π}{24}$或$\frac{13π}{24}$.

分析 令f(x)=0得tan(2x+$\frac{π}{6}$)=1,根據(jù)正弦函數(shù)的性質(zhì)可得2x+$\frac{π}{6}$=$\frac{π}{4}$+kπ,從而可解得f(x)的零點.

解答 解:令f(x)=0得tan(2x+$\frac{π}{6}$)=1,
∴2x+$\frac{π}{6}$=$\frac{π}{4}$+kπ,
解得x=$\frac{π}{24}$+$\frac{kπ}{2}$,k∈Z.
當(dāng)k=0時,x=$\frac{π}{24}$,當(dāng)k=1時,x=$\frac{13π}{24}$.
故答案為:$\frac{π}{24}$或$\frac{13π}{24}$.

點評 本題考查了函數(shù)零點的計算,正切函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲線是焦點在y軸上的橢圓”的必要不充分條件是( 。
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知{an}為等差數(shù)列,a1=1,a4=7,則a6=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x+$\frac{1}{x}$的零點個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{AB}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow$,其中$\overrightarrow{a}$,$\overrightarrow$不共線,則四邊形ABCD為( 。
A.平行四邊形B.矩形C.梯形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)已知x>2,求函數(shù)f(x)=$\frac{1}{x-2}$+x的值域;
(Ⅱ)關(guān)于x的不等式ax2+ax+a-1<0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若0<a<1,0<b<1,且a≠b,則a+b,$2\sqrt{ab}$,a2+b2,2ab中最大的是a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a=20.6,b=logπ3,c=log2sin$\frac{2π}{5}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

同步練習(xí)冊答案