19.(1)盒中有25個(gè)球,其中10個(gè)白的、5個(gè)黃的、10個(gè)黑的,從盒子中任意取一個(gè)球,已知它不是黑球,試求它是黃球的概率.
(2)某個(gè)工廠的工人月收入服從正態(tài)分布N(500,202),該工廠共有1200名工人,試估計(jì)月收入在
440元以下和560元以上的工人大約有多少?
[注:P(μ-σ,μ+σ)=0.6826   P(μ-2σ,μ+σ)=0.9544   P(μ-3σ,μ+3σ)=0.9974].

分析 (1)易得不是黑球共15種結(jié)果,其中是黃球的有5個(gè),由概率公式可得.
(2)由題意可得σ=20,再根據(jù)正態(tài)分布曲線的特征,P(440<ξ<560)=$\frac{1}{2}$•P(440-2σ<ξ<440+2σ),從而求得結(jié)果.

解答 解:(1)由題意從盒子中取出一個(gè)不是黑球(即白球或黃球)共有10+5=15種結(jié)果,
∴它是黃球的概率P=$\frac{5}{15}$=$\frac{1}{3}$;
(2)設(shè)該工廠工人的月收入為ξ,則ξ~N(500,202),所以μ=500,σ=20,
所以月收入在區(qū)間(500-3×20,500+3×20)內(nèi)取值的概率是0.9974,該區(qū)間即(440,560).
因此月收入在440元以下和560元以上的工人大約有1200×(1-0.9974)=1200×0.0026≈3(人).

點(diǎn)評(píng) 本題主要考查正態(tài)分布曲線的特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1|+|x-a|.
(1)當(dāng)a=2時(shí),解不等式:f(x)≤x+3
(2)當(dāng)x,y∈Z,則稱點(diǎn)P(x,y)為平面上單調(diào)格點(diǎn);若(2x,y)或(x,2y)為格點(diǎn),則稱點(diǎn)P(x,y)為半格點(diǎn).設(shè)Q={(x,y)|$\left\{\begin{array}{l}{0≤x≤2}\\{0≤x≤3}\end{array}\right.$},A={(x,y)|f(x)≤y≤3,a=2}.
①求從區(qū)域Ω中任取一點(diǎn)P,而該點(diǎn)落在區(qū)域A上的概率;
②求從區(qū)域Ω中的所有格點(diǎn)或半格點(diǎn)中任取一點(diǎn)P,而該點(diǎn)是區(qū)域A上的格點(diǎn)或半格點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),則$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列四個(gè)命題:
(1)函數(shù)f(x)=loga(2x-1)-1的圖象過(guò)定點(diǎn)(1,0);
(2)函數(shù)y=log2x與函數(shù)y=2x互為反函數(shù);
(3)已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2-|x|;
(4)若loga$\frac{1}{2}$>1,則a的取值范圍是($\frac{1}{2}$,1)或(2,+∞);
(5)函數(shù)y=loga(5-ax)在區(qū)間[-1,3)上單調(diào)遞減,則a的范圍是(1,$\frac{5}{3}$];
其中所有正確命題的序號(hào)是(2)(3)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等軸雙曲線過(guò)點(diǎn)(2,1),則雙曲線的焦點(diǎn)坐標(biāo)為( 。
A.$({±\sqrt{3},0})$B.$({0,±\sqrt{3}})$C.$({±\sqrt{6},0})$D.$({0,±\sqrt{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.滿足a,b∈{0,1,2 },且關(guān)于x的方程ax2+2x+b=0有實(shí)數(shù)解的有序數(shù)對(duì)(a,b)的個(gè)數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.直線3x-2y=4的截距式方程是$\frac{x}{\frac{4}{3}}+\frac{y}{-2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2-(a+$\frac{1}{a}$)x+1,
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)≤0;
(2)若a>0,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,且Sn=tan-$\frac{1}{2}$,其中n∈N*.
(1)求實(shí)數(shù)t的值和數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log3a2n,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案