5.在平面直角坐標(biāo)系xOy中,已知定點(diǎn)T(0,-4),動點(diǎn)Q,R分別在x,y軸上,且$\overrightarrow{TQ}•\overrightarrow{QR}=0$,點(diǎn)P為RQ的中點(diǎn),點(diǎn)P的軌跡為曲線C,點(diǎn)E是曲線C上一點(diǎn),其橫坐標(biāo)為2,經(jīng)過點(diǎn)(0,2)的直線l與曲線C交于不同的兩點(diǎn)A,B(不同于點(diǎn)E),直線EA,EB分別交直線y=-2于點(diǎn)M,N.
(I)求點(diǎn)P的軌跡方程;
(II)若O為原點(diǎn),求證:$∠MON=\frac{π}{2}$.

分析 (Ⅰ)由題意可知,設(shè)P(x,y),利用中點(diǎn)坐標(biāo)公式求得Q(2x,0),R(0,2y),分別求得$\overline{TQ}$和$\overline{QR}$,由$\overrightarrow{TQ}•\overrightarrow{QR}=0$,整理即可求得P的軌跡方程;
(Ⅱ)由(I)可知點(diǎn)E的坐標(biāo)為(2,2),設(shè)出A、B的坐標(biāo)及直線方程,與拋物線方程聯(lián)立,整理得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理求得x1x2,x1+x2,求得直線AE的方程,分別表示出向量$\overline{OM}$和$\overline{ON}$,并求得$\overline{OM}$•$\overline{ON}$=0,即可求得OM⊥ON,以此$∠MON=\frac{π}{2}$.

解答 解:(Ⅰ)設(shè)P(x,y),Q(x0,0),R(0,y0),
∵點(diǎn)P為RQ的中點(diǎn),
∴$\left\{\begin{array}{l}x=\frac{x_0}{2}\\ y=\frac{y_0}{2}\end{array}\right.$,得$\left\{\begin{array}{l}{x_0}=2x\\{y_0}=2y\end{array}\right.$,
∴Q(2x,0),R(0,2y).(2分)
∵T(0,-4),$\overrightarrow{TQ}•\overrightarrow{QR}=0$,$\overrightarrow{TQ}=(2x,4),\overrightarrow{RQ}=(2x,-2y)$;
∴4x2-8y=0即x2=2y(5分)
(Ⅱ)證明:由(I)可知點(diǎn)E的坐標(biāo)為(2,2),設(shè)$A({x_1},\frac{x_1^2}{2})$,$B({x_2},\frac{x_2^2}{2})$,M(xM,-2),N(xN,-2),
∵直線l與曲線C交于不同的兩點(diǎn)A,B(不同于點(diǎn)E).
∴直線l一定有斜率,設(shè)直線l方程為y=kx+2(k≠0)(6分)
與拋物線方程聯(lián)立得到$\left\{\begin{array}{l}y=kx+2\\{x^2}=2y\end{array}\right.$,消去y,得:x2-2kx-4=0
則由韋達(dá)定理得:x1x2=-4,x1+x2=2k(7分)
直線AE的方程為:$y-2=\frac{{\frac{x_1^2}{2}-2}}{{{x_1}-2}}({x-2})$,即$y=\frac{{{x_1}+2}}{2}({x-2})+2$,
令y=-2,得${x_M}=\frac{{2{x_1}-4}}{{{x_1}+2}}$同理可得:${x_N}=\frac{{2{x_2}-4}}{{{x_2}+2}}$(9分)
又$\overrightarrow{OM}=({x_M},-2),\overrightarrow{ON}=({x_N},-2)$,
得:$\overrightarrow{OM}•\overrightarrow{ON}={x_M}{x_N}+4=4+\frac{{2{x_1}-4}}{{{x_1}+2}}•\frac{{2{x_2}-4}}{{{x_2}+2}}$,
=$4+\frac{{4[{x_1}{x_2}-2({x_1}+{x_2})+4]}}{{{x_1}{x_2}+2({x_1}+{x_2})+4}}$,
=$4+\frac{4(-4-4k+4)}{(-4+4k+4)}=0$.(11分)
∴OM⊥ON,即∠MON=$\frac{π}{2}$(12分)

點(diǎn)評 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、數(shù)量積運(yùn)算性質(zhì)、直線與拋物線相交轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:選擇題

如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出下列命題:
①函數(shù)$y=cos(\frac{2}{3}x+\frac{π}{2})$是奇函數(shù);
②存在實(shí)數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5π}{4})$的一條對稱軸;
⑤函數(shù)$y=sin(2x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$成中心對稱.
其中正確命題的序號為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=lnx+x2-2ax+a2,a∈R.
(1)當(dāng)a=0時(shí),曲線y=f(x)與直線y=3x+m相切,求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在[1,3]上存在單調(diào)遞增區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F是拋物線y2=4x的焦點(diǎn),P是拋物線上一點(diǎn),延長PF交拋物線于點(diǎn)Q,若|PF|=5,則|QF|=( 。
A.$\frac{9}{8}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線C:y2=6x,過拋物線的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,交拋物線的準(zhǔn)線于點(diǎn)B,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,則點(diǎn)A到原點(diǎn)的距離為$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{e^x}$-ax(x∈R).
(Ⅰ)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0且x>0時(shí),f(x)≤|lnx|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在極坐標(biāo)系中,過點(diǎn)M(2,0)的直線l與極軸的夾角α=$\frac{π}{6}$.
(1)將l的極坐標(biāo)方程寫成ρ=f(θ)的形式;
(2)在極坐標(biāo)系中,以極點(diǎn)為坐標(biāo)原點(diǎn),以極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系.若曲線C2:$\left\{{\begin{array}{l}{x=3sinθ}\\{y=acosθ}\end{array}}$(θ為參數(shù),a∈R)與直線l有一個(gè)公共點(diǎn)在y軸上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某中學(xué)校本課程開設(shè)了A,B,C,D共4門選修課,每個(gè)學(xué)生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生.
(1)求這3名學(xué)生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學(xué)生選擇的概率;
(3)求A選修課被這3名學(xué)生選擇的人數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案