如圖正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AB,CC1的中點,則異面直線A1C與EF所成角的余弦值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:因為是正方體,又是求空間角,所以易選用向量法,先建立如圖所示坐標系,再求得相應點的坐標,相關向量的坐標,最后用向量的夾角公式求解.
解答:解:建立如圖所示空間直角坐標:設正方體的棱長為2
則A1(2,0,2),C(0,2,0),E(2,1,0),F(xiàn)(0,2,1)


故選B
點評:本題主要考查多面體的結構特征及空間角的求法,同時,還考查了轉化思想和運算能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖正方體ABCD-A1B1C1D1中,M為BC中點,則直線D1M與平面ABCD所成角的正切值為
 
,異面直線DC與D1M所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為1,點M是棱AA1的中點,點O是BD1的中點,求證:OM是異面直線AA1,BD1的公垂線,并求OM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為2,則點B1到直線AC的距離是
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)如圖正方體ABCD-A1B1C1D1,在它的12條棱及12條面的對角線所在的直線中,選取若干條直線確定平面,在所有的這些平面中:
(1)、過B1C且與BD平行的平面有且只有一個;
(2)、過B1C且與BD垂直的平面有且只有一個;
(3)、存在平面α,過B1C與直線BD所成的角等于30.
其中是真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲.如圖1,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=
2
:1,F(xiàn)是AB的中點.
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù);
(3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.
乙、如圖正方體ABCD-A1B1C1D1中,E、F、G分別是B1B、AB、BC的中點.
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
,
D1B

注意:考生在(19甲)、(19乙)兩題中選一題作答,如果兩題都答,只以(19甲)計分.

查看答案和解析>>

同步練習冊答案