如圖,在四面體ABCD中,E、F分別是AB、AC的中點(diǎn),過(guò)直線EF做平面α,分別交BD于M、交CD于N.求證:EF∥MN.
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面平行的判定和性質(zhì)定理解答.由EF∥BC可得,EF∥平面BCD,平面EFNM過(guò)EF,與平面BCD交于MN,得到EF∥MN.
解答: 證明:∵E、F分別是AB、AC的中點(diǎn),
∴EF∥BC,
并且EF?平面BCD,BC?平面BCD,
∴EF∥平面BCD,
又EF?平面EFNM,平面EFNM∩平面BCD=MN,
∴EF∥MN.
點(diǎn)評(píng):本題考查了線面平行的判定定理和性質(zhì)定理的運(yùn)用,體現(xiàn)了轉(zhuǎn)化的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AC=2,AC1與底面成60°角,E、F分別為AA1、AB的中點(diǎn).
(1)求異面直線EF與AC1所成角的大;
(2)求EF與平面ACC1A1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=x2+3(m+1)x+n的零點(diǎn)是1和2,求函數(shù)y=logn(mx+2)的零點(diǎn);
(2)已知函數(shù)f(x)=
2x-1,x≤0
log2(x+1),x>0
,如果f(x0)<1,求x0取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)F的距離為5,該拋物線的頂點(diǎn)在直線MF上的射影為點(diǎn)P,則點(diǎn)P的坐標(biāo)為( 。
A、(
64
25
48
25
B、(
4
5
,
8
5
C、(
64
3
,
48
5
D、(
4
25
8
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且x≥0時(shí),f(x)=2x,函數(shù)f(x)的值域?yàn)榧螹
(1)求f(-2);
(2)設(shè)函數(shù)g(x)=lg[x2-(a-2)x-2a]的定義域?yàn)镹,若M⊆N,其實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+ax2+bx.
(1)如果函數(shù)f(x)在x=1處取得極值0,求實(shí)數(shù)a、b的值;
(2)若b=-2a-1,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,l表示三條不同的直線,α,β,γ表示三個(gè)不同的平面,有下列五個(gè)命題:
①若α∩β=a,β∩γ=b,且a∥b,則α∥γ;
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,則α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,則b⊥α;
④若a?α,b?α,l⊥a,l⊥b,則l⊥α;
⑤若a∥b,b∥α,則a∥α;
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,
3
),
b
=(
3
2
,
1
2
),
c
=
a
+(m+1)
b
,
d
=-
1
m
a
+
1
n
b
(mn≠0)
(1)若m=-
1
2
,n=-
1
16
,求向量
c
d
的夾角;
(2)若n=
1
3
,且|
a
+
c
|=|
b
+
d
|,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log
1
2
1+x
1-x

(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案