若函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上存在反函數(shù),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):反函數(shù)
專題:不等式的解法及應(yīng)用
分析:函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上存在反函數(shù),可得函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上具有單調(diào)性,利用而出函數(shù)的單調(diào)性即可得出.
解答: 解:∵函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上存在反函數(shù),
∴函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上具有單調(diào)性,
∴a≤-1或a≥2.
∴實(shí)數(shù)a的取值范圍是a∈(-∞,-1]∪[2,+∞).
故答案為:a∈(-∞,-1]∪[2,+∞).
點(diǎn)評:本題考查了反函數(shù)的性質(zhì)、二次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,則a2013=
 
;a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等差數(shù)列{an}滿足a1=2,a22=a5+6,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在一個極坐標(biāo)系中點(diǎn)C的極坐標(biāo)為(2,
π
3
)

(1)求出以C為圓心,半徑長為2的圓的極坐標(biāo)方程(寫出解題過程)并畫出圖形
(2)在直角坐標(biāo)系中,以圓C所在極坐標(biāo)系的極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系,點(diǎn)P是圓C上任意一點(diǎn),Q(5,-
3
)
,M是線段PQ的中點(diǎn),當(dāng)點(diǎn)P在圓C上運(yùn)動時,求點(diǎn)M的軌跡的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
a
x2
的焦點(diǎn)坐標(biāo)為( 。
A、(0,-
a
4
)
B、(0,
a
4
)
C、(
a
4
,0)
D、(
1
4a
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={x|a-1<x<a+1},B={x|x>5或x<-1},且A∩B=∅,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2-2x+m+1=0有兩個正根,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|-|2x-2|
(1)解不等式f(x)≥-2;
(2)設(shè)g(x)=x-a,對任意x∈[a,+∞)都有 g(x)≥f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)2log32-log3 
32
9
+log38
(2)
364
-(-
7
8
)0+16
3
4
+25
1
2

查看答案和解析>>

同步練習(xí)冊答案