A. | $\overrightarrow{OC}$=sinα$\overrightarrow{OA}$+cosα$\overrightarrow{OB}$ | B. | $\overrightarrow{OC}$=sin2α$\overrightarrow{OA}$+cos2α$\overrightarrow{OB}$ | ||
C. | $\overrightarrow{OC}$=sinα$\overrightarrow{OA}$-cosα$\overrightarrow{OB}$ | D. | $\overline{OC}$=sin2α$\overrightarrow{OA}$-cos2α$\overrightarrow{OB}$ |
分析 將三點共線轉(zhuǎn)化為以這三點確定的兩個向量共線;利用向量共線的充要條件得到等式;利用向量的運算法則將用O為起點的向量表示;利用平面向量的基本定理得證.
解答 解:由A,B,C三點共線,可得$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,x+y=1,
∵sin2α+cos2α=1,∴$\overrightarrow{OC}$=sin2α$\overrightarrow{OA}$+cos2α$\overrightarrow{OB}$,滿足題意.
故選:B.
點評 本題考查向量的運算法則、向量共線的充要條件、利用向量共線解決三點共線.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,3} | B. | {2,4} | C. | {1,2,4,5,6} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y+1)2=2 | B. | (x+2)2+(y-1)2=2 | C. | (x-1)2+(y-2)2=2 | D. | (x-2)2+(y-1)2=2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com