若在數(shù)列{an}中,a1=3,an+1=an+n3-n2,則通項(xiàng)an=
 
考點(diǎn):數(shù)列遞推式
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:n≥2時(shí),an-an-1=(n-1)3-(n-1)2,利用累加法求數(shù)列的通項(xiàng)公式.
解答: 解:∵數(shù)列{an}中,an+1=an+n3-n2,
∴n≥2時(shí),an-an-1=(n-1)3-(n-1)2,
∴n≥2時(shí),an=a1+(13-12)+(23-22)+…+(n-1)3-(n-1)2=3+
1
4
(n-1)2n2
-
1
6
(n-1)n(2n-1),
n=1時(shí),結(jié)論也成立,
故答案為:an=3+
1
4
(n-1)2n2-
1
6
(n-1)n(2n-1)
點(diǎn)評(píng):本題考查了數(shù)列遞推式,訓(xùn)練了累加法求數(shù)列的通項(xiàng)公式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名籃球運(yùn)動(dòng)員在四場(chǎng)比賽中的得分?jǐn)?shù)據(jù)以莖葉圖記錄如圖所示:
(1)求乙球員得分的平均數(shù)和方差;
(2)求甲乙在一場(chǎng)比賽里得分的和的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知?ABCD中,E是AB的中點(diǎn),F(xiàn)是BE的中點(diǎn),DF,CE相較于點(diǎn)O,已知
AB
=
a
,
AD
=
b
,用
a
,
b
的線(xiàn)性組合表示
OD
EO

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若An=
.
a1a2an
(ai=0)或1,i=1,2,…,n,則稱(chēng)An為0和1的一個(gè)n位排列.對(duì)于An,將排列
.
ana1a2,…an-1
記為R1(An);將排列
.
an-1ana1,…an-2
記為R2(An);依此類(lèi)推,直至Rn(An)=An.對(duì)于排列An和R1(An)(i=1,2,…n-1),它們對(duì)應(yīng)位置數(shù)字相同的個(gè)數(shù)減去對(duì)應(yīng)位置數(shù)字不同的個(gè)數(shù),叫做An和R1(An)的相關(guān)值,記作t(An,R1(An)).例如A3=
.
110
,則R1(A3)=
.
011
,t(A3R1,(A3))=-1.若t(An,R1(An))=-1(i=1,2,…,n-1),則稱(chēng)An為最佳排列.  
(Ⅰ)寫(xiě)出所有的最佳排列A3
 
;   
(Ⅱ)若某個(gè)A2k+1(k是正整數(shù))為最佳排列,則排列A2k+1中1的個(gè)數(shù)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類(lèi)數(shù)列{xn}稱(chēng)作周期為m的周期數(shù)列,m的最小值稱(chēng)作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱(chēng)周期.例如當(dāng)xn=2時(shí){xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí){yn}是周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
(2)設(shè)數(shù)列{an}滿(mǎn)足an+2=an+1-an+1(n∈N*),a1=2,a2=3,數(shù)列{an}的前n項(xiàng)和為Sn,試問(wèn)是否存在實(shí)數(shù)p,q,使對(duì)任意的n∈N*都有p≤(-1)n
Sn
n
≤q成立,若存在,求出p,q的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=3sin(2x+
π
3
)-1
的圖形按向量
a
=(m,n)
平移后得到函數(shù)g(x)=3sin2x的圖形則向量
a
的一個(gè)可能值是(  )
A、(-
π
6
,1)
B、(-
π
6
,-1)
C、(
π
6
,1)
D、(
π
3
,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
b
不共線(xiàn),
a
b
≠0
,且
c
=
a
-
(
a
a
)
b
a
b
,則向量
a
c
的夾角為(  )
A、
π
2
B、
π
6
C、
π
3
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2(a,b∈R,a>b且a≠0)的圖象在點(diǎn)(2,f(2))處的切線(xiàn)與x軸平行.
(Ⅰ)試確定a,b的符號(hào);
(Ⅱ)若函數(shù)f(x)在區(qū)間[b,a]上有最大值為a-b2,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果向量
a
=(2,1),
b
=(-3,4),那么向量3
a
+4
b
的坐標(biāo)是(  )
A、(19,-6)
B、(-6,19)
C、(-1,16)
D、(16,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案