1.執(zhí)行如圖所示的程序框圖,則輸出S的結(jié)果是( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{1+\sqrt{3}}{2}$D.$\frac{1-\sqrt{3}}{2}$

分析 根據(jù)執(zhí)行循環(huán)的n值,可得算法的功能是求S的值,再根據(jù)正弦函數(shù)的周期性,即可求出S的值.

解答 解:由程序框圖知:執(zhí)行循環(huán)的條件是n<26,
算法的功能是求S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+sin$\frac{4π}{3}$+sin$\frac{5π}{3}$+…+sin$\frac{25π}{3}$的值,
且sin$\frac{nπ}{3}$是以6為周期的數(shù)列;
所以輸出的S=$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$+0-$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$+…+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
故選:A.

點評 本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列選項中小于tan$\frac{π}{6}$的是( 。
A.sin$\frac{π}{4}$B.cos$\frac{π}{3}$C.sin$\frac{π}{2}$D.cos$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B,已知點A的坐標(biāo)為(-2,0),點P(0,y0)滿足|PA|=|PB|,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實數(shù)a,b∈{1,2},則在不等式x+y-3≥0表示的平面區(qū)域內(nèi)的點P(a,b)共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性 并求出f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.化簡cos222.5°-sin222.5°的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.1C.-$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)h(x)=2sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{4}$個單位,再向上平移2個單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象( 。
A.關(guān)于直線x=0對稱B.關(guān)于直線x=π對稱C.關(guān)于點($\frac{π}{8}$,0)對稱D.關(guān)于點($\frac{π}{8}$,2)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,則cosα( 。
A.$\frac{2\sqrt{2}+\sqrt{3}}{6}$B.$\frac{2\sqrt{6}-1}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{2}-\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,右焦點到直線y=x的距離為$\sqrt{3}$.
(1)求橢圓E的方程;
(2)已知點M的坐標(biāo)為(2,1),斜率為$\frac{1}{2}$的直線l交橢圓E于兩個不同點A,B,設(shè)直線MA與MB的斜率為k1,k2,求證:k1+k2為定值.

查看答案和解析>>

同步練習(xí)冊答案